Citation:
ZHANG Lei, HU Bo, CHEN Hua, LI Xian-Jun, LI Rui-Xiang. Catalytic Performance of Porous SiO2·xH2O Supported RuB Nanoparticles for the Hydrogenation of Quinoline[J]. Acta Physico-Chimica Sinica,
;2010, 26(09): 2422-2428.
doi:
10.3866/PKU.WHXB20100901
-
A porous and hydroxyl group-rich catalyst RuB/SiO2·xH2O was prepared by hydrolyzing ethyl silicate, protecting SiO2·xH2O with polyvinyl pyrrolidone (PVP), and etching SiO2·xH2O with NaOH. The catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transforminfrared (FT-IR) spectroscopy, and BET (Brunauer-Emmett-Teller). We found that the catalyst showed excellent performance for the hydrogenation of quinoline under mild condition. At a hydrogen pressure of 3.0 MPa and a reaction temperature of 80 ℃, the conversion of quinoline reached 95% and the selectivity for 1,2,3,4- tetrahydroquinoline was 97%. This porous catalyst also showed an excellent anti-poisoning characteristic. The catalyst can be reused several times. We also investigated the effect of surface hydroxyl groups and the solvent on catalytic activity and selectivity. The results showed that using water as a solvent leads to higher catalyst activity and selectivity for the hydrogenation of quinoline. The mechanism of quinoline hydrogenation over the catalyst is discussed. The coordination of the nitrogen on quinoline onto the surface of ruthenium nanoparticles, the effect of hydrogen bond among the surface hydroxyl groups of the catalyst and the nitrogen present in quinoline and in the water solvent were favorable for the adsorption of the substrate and the desorption of the products fromthe surface of the catalyst.
-
Keywords:
-
Ruthenium
, - /SiO2·xH2O,
- Quinoline,
- Hydrogenation,
- Tetrahydroquinoline
-
-
-
-
[1]
1. Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron, 1996, 52:15031
-
[2]
2. Alvarado, Y.; Busolo, M. A.; López-Linares, F. J. Mol. Catal. A-Chem., 1999, 142: 163
-
[3]
3. Rosales, M.; Vallejo, R.; Soto, J. J.; Chacón, G.; nález, á.; nzález, B. Catalysis Letters, 2006, 106: 3
-
[4]
4. Sánchez-Delgado, R. A.; Rondón, D.; Andriollo, A.; Herrera, V.;Martín, G.; Chaudret, B. Organometallics, 1993, 12: 4291
-
[5]
5. Wang, W. B.; Lu, S. M.; Yang, P. Y.; Han, X.W.; Zhou, Y. G.J. Am. Chem. Soc., 2003, 125: 10536
-
[6]
6. Yang, P. Y.; Zhou, Y. G. Tetrahedron: Asymmetry, 2004, 15: 1145
-
[7]
7. Lu, S. M.; Han, X. W.; Zhou, Y. G. Adv. Synth. Catal., 2004, 346:909
-
[8]
8. Fujita, K.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R. TetrahedronLetters, 2004, 45: 3215
-
[9]
9. Rosales, M.; Castillo, J.; nzález, A.; nzález, L.; Molina, K.;Navarro, J.; Pacheco, I.; Pérez, H. Trans. Metal Chem., 2004, 29:221
-
[10]
10. Busolo, M. A.; López-Linares, F.; Andriollo, A.; Páez, D. E.J. Mol. Catal. A-Chem., 2002, 189: 211
-
[11]
11. Frediani, P.; Pistolesi, V.; Frediani, M.; Rosi, L. InorganicaChimica Acta, 2006, 359: 917
-
[12]
12. Rojas, I.; López-Linares, F.; Valencia, N.; Bianchini, C. J. Mol.Catal. A-Chem., 1999, 144: 1
-
[13]
13. Bianchini, C.; Frediani, M.; Mantovani, G.; Vizza, F.Organometallics, 2001, 20: 2660
-
[14]
14. Bianchini, C.; Dal Santo, V.; Meli, A.; Moneti, S.; Moreno, M.;Oberhauser,W.; Psaro, R.; Sordelli, L.; Vizza, F. J. Catal., 2003,213: 47
-
[15]
15. Alonso, F.; Yus, M. Adv. Synth. Catal., 2001, 343: 188
-
[16]
16. Sánchez-Delgado, R. A.; Machalaba, N.; Ng-a-qui, N. Catal.Commun., 2007, 8: 2115
-
[17]
17. Campanati, M.; Cassgrande, M.; Fagiolino, I.; Lenarda, M.;Storaro, L.; Battagliarin, M.; Vaccari, A. J. Mol. Catal. A-Chem.,2002, 184: 267
-
[18]
18. Zhang, R. M.; Fan, G. Y.; Li, C.;Wang, Y. Y.; Li, R. X.; Chen, H.;Li, X. J. Acta Phys. -Chim. Sin., 2008, 24: 965 [张瑞敏,樊光银,李诚,王瑛瑛, 李瑞祥,陈华,李贤均. 物理化学学报,2008, 24: 965]
-
[19]
19. Ma, Z. Y.; Xu, R.; Yang, C.;Wei, W.; Li,W. H.; Sun, Y. H. ActaPhys. -Chim. Sin., 2004, 20: 1221 [马中义,徐润,杨成,魏伟, 李文怀,孙予罕.物理化学学报, 2004, 20: 1221]
-
[20]
20. Lide, D. R. Handbook of chemistry and physics. Boca Raton, FL:CRC Press/Taylor and Francis Group, version 2010
-
[21]
21. Fish, R. H.; Kim, H. S.; Fong, R. H. Organometallics, 1989, 8:1375
-
[22]
22. Fish, R. H.; Michaels, J. N.; Moore, R. S.; Heinemann, H. J. Catal.,1990, 123: 74
-
[23]
23. Fish, R. H.; Baralt, E.; Kim, H. S. Organometallics, 1991, 10:1965
-
[24]
24. Fish, R. H.; Kim, H. S.; Fong, R. H. Organometallics, 1991, 10:770
-
[25]
25. Baralt, E.; Smith, S. J.; Hurwitz, J.; Horváth, I. T.; Fish, R. H.J. Am. Chem. Soc., 1992, 114: 5187
-
[26]
26. La Vopa, V.; Satterfield, C. N. J. Catal., 1988, 110: 375
-
[1]
-
-
-
[1]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[2]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[3]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[4]
Xiaofeng Xia , Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063
-
[5]
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
-
[6]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[9]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[10]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[11]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[14]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[15]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[16]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[17]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[18]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[19]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[20]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[1]
Metrics
- PDF Downloads(1070)
- Abstract views(2568)
- HTML views(12)