Citation: ZHANG Lei, HU Bo, CHEN Hua, LI Xian-Jun, LI Rui-Xiang. Catalytic Performance of Porous SiO2·xH2O Supported RuB Nanoparticles for the Hydrogenation of Quinoline[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2422-2428. doi: 10.3866/PKU.WHXB20100901 shu

Catalytic Performance of Porous SiO2·xH2O Supported RuB Nanoparticles for the Hydrogenation of Quinoline

  • Received Date: 19 February 2010
    Available Online: 6 July 2010

    Fund Project: 国家自然科学基金(21072138)资助项目 (21072138)

  • A porous and hydroxyl group-rich catalyst RuB/SiO2·xH2O was prepared by hydrolyzing ethyl silicate, protecting SiO2·xH2O with polyvinyl pyrrolidone (PVP), and etching SiO2·xH2O with NaOH. The catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transforminfrared (FT-IR) spectroscopy, and BET (Brunauer-Emmett-Teller). We found that the catalyst showed excellent performance for the hydrogenation of quinoline under mild condition. At a hydrogen pressure of 3.0 MPa and a reaction temperature of 80 ℃, the conversion of quinoline reached 95% and the selectivity for 1,2,3,4- tetrahydroquinoline was 97%. This porous catalyst also showed an excellent anti-poisoning characteristic. The catalyst can be reused several times. We also investigated the effect of surface hydroxyl groups and the solvent on catalytic activity and selectivity. The results showed that using water as a solvent leads to higher catalyst activity and selectivity for the hydrogenation of quinoline. The mechanism of quinoline hydrogenation over the catalyst is discussed. The coordination of the nitrogen on quinoline onto the surface of ruthenium nanoparticles, the effect of hydrogen bond among the surface hydroxyl groups of the catalyst and the nitrogen present in quinoline and in the water solvent were favorable for the adsorption of the substrate and the desorption of the products fromthe surface of the catalyst.

  • 加载中
    1. [1]

      1. Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron, 1996, 52:15031

    2. [2]

      2. Alvarado, Y.; Busolo, M. A.; López-Linares, F. J. Mol. Catal. A-Chem., 1999, 142: 163

    3. [3]

      3. Rosales, M.; Vallejo, R.; Soto, J. J.; Chacón, G.; nález, á.; nzález, B. Catalysis Letters, 2006, 106: 3

    4. [4]

      4. Sánchez-Delgado, R. A.; Rondón, D.; Andriollo, A.; Herrera, V.;Martín, G.; Chaudret, B. Organometallics, 1993, 12: 4291

    5. [5]

      5. Wang, W. B.; Lu, S. M.; Yang, P. Y.; Han, X.W.; Zhou, Y. G.J. Am. Chem. Soc., 2003, 125: 10536

    6. [6]

      6. Yang, P. Y.; Zhou, Y. G. Tetrahedron: Asymmetry, 2004, 15: 1145

    7. [7]

      7. Lu, S. M.; Han, X. W.; Zhou, Y. G. Adv. Synth. Catal., 2004, 346:909

    8. [8]

      8. Fujita, K.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R. TetrahedronLetters, 2004, 45: 3215

    9. [9]

      9. Rosales, M.; Castillo, J.; nzález, A.; nzález, L.; Molina, K.;Navarro, J.; Pacheco, I.; Pérez, H. Trans. Metal Chem., 2004, 29:221

    10. [10]

      10. Busolo, M. A.; López-Linares, F.; Andriollo, A.; Páez, D. E.J. Mol. Catal. A-Chem., 2002, 189: 211

    11. [11]

      11. Frediani, P.; Pistolesi, V.; Frediani, M.; Rosi, L. InorganicaChimica Acta, 2006, 359: 917

    12. [12]

      12. Rojas, I.; López-Linares, F.; Valencia, N.; Bianchini, C. J. Mol.Catal. A-Chem., 1999, 144: 1

    13. [13]

      13. Bianchini, C.; Frediani, M.; Mantovani, G.; Vizza, F.Organometallics, 2001, 20: 2660

    14. [14]

      14. Bianchini, C.; Dal Santo, V.; Meli, A.; Moneti, S.; Moreno, M.;Oberhauser,W.; Psaro, R.; Sordelli, L.; Vizza, F. J. Catal., 2003,213: 47

    15. [15]

      15. Alonso, F.; Yus, M. Adv. Synth. Catal., 2001, 343: 188

    16. [16]

      16. Sánchez-Delgado, R. A.; Machalaba, N.; Ng-a-qui, N. Catal.Commun., 2007, 8: 2115

    17. [17]

      17. Campanati, M.; Cassgrande, M.; Fagiolino, I.; Lenarda, M.;Storaro, L.; Battagliarin, M.; Vaccari, A. J. Mol. Catal. A-Chem.,2002, 184: 267

    18. [18]

      18. Zhang, R. M.; Fan, G. Y.; Li, C.;Wang, Y. Y.; Li, R. X.; Chen, H.;Li, X. J. Acta Phys. -Chim. Sin., 2008, 24: 965 [张瑞敏,樊光银,李诚,王瑛瑛, 李瑞祥,陈华,李贤均. 物理化学学报,2008, 24: 965]

    19. [19]

      19. Ma, Z. Y.; Xu, R.; Yang, C.;Wei, W.; Li,W. H.; Sun, Y. H. ActaPhys. -Chim. Sin., 2004, 20: 1221 [马中义,徐润,杨成,魏伟, 李文怀,孙予罕.物理化学学报, 2004, 20: 1221]

    20. [20]

      20. Lide, D. R. Handbook of chemistry and physics. Boca Raton, FL:CRC Press/Taylor and Francis Group, version 2010

    21. [21]

      21. Fish, R. H.; Kim, H. S.; Fong, R. H. Organometallics, 1989, 8:1375

    22. [22]

      22. Fish, R. H.; Michaels, J. N.; Moore, R. S.; Heinemann, H. J. Catal.,1990, 123: 74

    23. [23]

      23. Fish, R. H.; Baralt, E.; Kim, H. S. Organometallics, 1991, 10:1965

    24. [24]

      24. Fish, R. H.; Kim, H. S.; Fong, R. H. Organometallics, 1991, 10:770

    25. [25]

      25. Baralt, E.; Smith, S. J.; Hurwitz, J.; Horváth, I. T.; Fish, R. H.J. Am. Chem. Soc., 1992, 114: 5187

    26. [26]

      26. La Vopa, V.; Satterfield, C. N. J. Catal., 1988, 110: 375


  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    5. [5]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(1070)
  • Abstract views(2568)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return