Citation: LUO Yong-Chun, ZHANG Tie-Jun, WANG Duo, KANG Long. Influence of Ball-Milling on Hydrogen Storage and Electrochemical Properties of (Ti Cr)0.497V0.42Fe0.083/30%(w) (LaRMg)(NiCoAl)3.5 Alloy Electrodes[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2397-2404. doi: 10.3866/PKU.WHXB20100845 shu

Influence of Ball-Milling on Hydrogen Storage and Electrochemical Properties of (Ti Cr)0.497V0.42Fe0.083/30%(w) (LaRMg)(NiCoAl)3.5 Alloy Electrodes

  • Received Date: 18 February 2010
    Available Online: 7 July 2010

    Fund Project:

  • Changes in phase structure, hydrogen storage and electrochemical properties of the (Ti Cr)0.497V0.42Fe0.083+ 30% (w) (LaRMg)(NiCoAl)3.5 alloy after treatment by ball-milling for different time (t=0, 0.5, 1, 3, 5, 10 h) were investigated systematically. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) showed that the particle size of the milled composite samples decreased gradually and the powder appears aggregated. The A2B7 alloy particles were uniformly dispersed and encapsulated on the surface of the V based alloy particles that were formed after increasing the ball-milling time. It was found that nanocrystalline composites were formed and partial amorphization occurred when the milling time was more than 5 h. The crystal parameter a and the cell volume V of the BCC phase structure in the composite both showed a decrease. Hydrogen storage capacity of the single V based alloy was 3.11%(w), with an increase in milling time hydrogen storage capacity of the milled composites decreased and the maximum hydrogen absorption capacity at room temperature approached 2.47%(w). Electrochemical studies showed that the electrochemical properties of the milled composite were enhanced and the maximum discharge capacity was 425.8 mAh·g-1. The cyclic stability of the composite electrode improved noticeably. After 100 charge-discharge cycles the discharge capacity retention rate C100/Cmax of the milled composite electrode was 97%, and it had a better cycle life than that of the A2B7 type alloy electrode.

  • 加载中
    1. [1]

      1. Billur, S.; Farida, L. D.; Michael, H. International Journal of Hydrogen Energy, 2007, 32: 1121

    2. [2]

      2. Zhu, Y. F.; Pan, H. G.; Gao, M. X.; Wang, Q. D. International Journal of Hydrogen Energy, 2002, 27: 287

    3. [3]

      3. Dou, T.; Wu, Z.; Mao, J. F.; Xu, N, X. Mater. Sci. Eng. A-struct. Mater. Prop. Microstruc. Process., 2008, 476(1-2):34

    4. [4]

      4. Pan, H. G.; Zhu, Y. F.; Gao, M. X. J. Alloy. Compd., 2004, 370: 254

    5. [5]

      5. Li, Q. A.; Lei, Y. Q.; Wang, C. S. J. Power Source, 1998, 75: 288

    6. [6]

      6. Tsukahara, M.; Takahashi, K.; Mishima, T. J. Alloy. Compd., 1995, 231: 616

    7. [7]

      7. Tsukahara, M.; Takahashi, K.; Mishima, T.; Sakai, T.; Miyamura, H.; Kuriyama, N.; Uehara, I. J. Alloy. Compd., 1995, 224: 162

    8. [8]

      8. Tsukahara, M.; Takahashi, K.; Mishima, T. J. Alloy. Compd., 1996, 245: 59

    9. [9]

      9. Zhu, Y. F.; Pan, H. G.; Gao, M. X.; Li, R. International Journal of Hydrogen Energy, 2004, 29: 313

    10. [10]

      10. Pan, H. G.; Li, R.; Gao, M. X.; Liu, Y. F. International Journal of Hydrogen Energy, 2006, 31: 1188

    11. [11]

      11. Chen, L. X; Li, L.; Wang, X. H.; Dai, F. B.; Zheng, F. P.; Lei, Y. Q. Acta Phys. -Chim. Sin., 2006, 22(5): 523 [陈立新,李露,王新 华, 代发帮,郑坊平,雷永泉.物理化学学报, 2006, 22(5): 523]

    12. [12]

      12. Liu, F. Y.; Chen, L. X.; Li, L.; Jia, Y. M.; Lei, Y. Q. Acta Phys. - Chim. Sin., 2008, 24(9): 1694 [刘飞烨, 陈立新,李露, 贾彦敏,雷永泉. 物理化学学报, 2008, 24(9): 1694]

    13. [13]

      13. Lu, L.;Wang, W. J.; Fan, X. L; Jin, X. F.;Wang, H.; Lei, Y. Q.; Wang, Q. D.; Chen, L. X. International Journal of Hydrogen Energy, 2007, 32: 2434

    14. [14]

      14. Jia, Y. M.; Liu, F. Y.; Xiao, X. Z.; Hang, Z. M.; Lei, Y. Q.; Chen, L. X . Acta Phys. -Chim. Sin, 2009, 25(2): 247 [贾彦敏,刘飞烨, 肖学章,杭州明, 雷永泉, 陈立新.物理化学学报, 2009, 25(2): 247]

    15. [15]

      15. Wang, Y. Z.; Zhao, M. S.; Wang. L. M. International Journal of Hydrogen Energy, 2009, 34: 2646

    16. [16]

      16. Yu, X. B.; Li, F.; Wu, Z.; Xia, B. J. Physics Letters A, 2004, 320: 312

    17. [17]

      17. Chu, H. L.; Qiu, S. J.; Sun, L. X. Electrochimica Acta, 2007, 52: 6700

    18. [18]

      18. Liu, Y. F.; Zhang, S.; Li, R. International Journal of Hydrogen Energy, 2008, 33: 728

    19. [19]

      19. Parka, J. Y.; Parka, C. N.; Park, C. J. International Journal of Hydrogen Energy, 2007, 32: 4215

    20. [20]

      20. Liu, X. Studies on the electrochemical properties of Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.75/La1.5Mg0.5Ni6.7Al0.3 hydrogen storage composite material [D]. Lanzhou: LanzhouUniversity of Technology, 2008 [刘夏. Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.75/La1.5Mg0.5Ni6.7Al0.3复合储氢材料 的电化学性能研究[D]. 兰州: 兰州理工大学, 2008]

    21. [21]

      21. Wang, D. H.; Xu, G. S.; Luo, Y. C.; Kong, L. Journal of Lanzhou University of Technology, 2006, 32(6): 13 [王大辉,徐广胜, 罗永春,康龙. 兰州理工大学学报, 2006, 32(6): 13]

    22. [22]

      22. Yan, Y. G.; Chen, Y. G.; Liang, H. Rare Metal Materials and Engineering, 2006, 35(5): 686 [严义刚, 陈云贵,梁浩.稀有 金属与工程, 2006, 35(5): 686]

    23. [23]

      23. Yan, Y. G.; Chen, Y. G.; Liang, H. J. Alloy. Compd., 2007, 427: 110

    24. [24]

      24. Singh, B. K.; Shim, G. C.; Cho, S. W. International Journal of Hydrogen Energy, 2007, 32: 4961

    25. [25]

      25. Hang, Z. M.; Zheng, F. P.;Wang, C. T. Journal of Xi忆an Jiaotong University, 2008, 42(1): 114 [杭州明,郑坊平,王春涛.西安交 通大学学报, 2008, 42(1): 114]

    26. [26]

      26. Wang, J. H.; Pan, H. G.; Li, R.; Zhong, K.; Gao, M. X. International Journal of Hydrogen Energy, 2007, 32: 3381


  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    17. [17]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(1425)
  • Abstract views(2522)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return