Citation: CHEN Ben, HE Rong, XING LI Ming. Electronic Structures and Spectral Properties of 3-Pyrrolidinobenzanthrone[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2515-2522. doi: 10.3866/PKU.WHXB20100843 shu

Electronic Structures and Spectral Properties of 3-Pyrrolidinobenzanthrone

  • Received Date: 19 March 2010
    Available Online: 5 July 2010

    Fund Project: 重庆市自然科学基金(2009BB6002)资助项目 (2009BB6002)

  • Benzanthrone derivatives show great potential for use as new luminescent, nonlinear optical, and liquid crystalline materials. The geometries of the ground and the first excited states of 3-pyrrolidinobenzanthrone were optimized using quantum chemistry methods and the obtained structural parameters were compared with experimental data. The time-dependent density functional theory (TD-DFT) calculations were performed to estimate the absorption and emission spectra of 3-pyrrolidinobenzanthrone both in gas-phase and in solutions. In addition, the effects of different exchange correlation functionals, basis sets, and solvents on the absorption and emission spectra were analyzed in detail. We found that the strongest absorption and emission bands of 3-pyrrolidinobenzanthrone could be assigned to a charge transfer (CT) state with a ππ*character. The result of the B3LYP functional reproduces the experimental absorption spectrum very well and the MPWK functional accurately predicts the emission energy of the first excited state with an intramolecular charge transfer (ICT) feature. The calculated results indicate that solvent effects do not greatly influence the absorption and emission spectra. The theoretical results are in agreement with experimental observations.

  • 加载中
    1. [1]

      1. Pourtois, G.; Beljonne, D.; Cornil, J.; Ratner, M. A.; Bredas, J. L.J. Am. Chem. Soc., 2002, 124: 4436

    2. [2]

      2. Zerza, G.; Sharber, M. C.; Brabec, C. J.; Sariciftci, N. S.; mez,R.; Segura, J. N.; Martin, N.; Srdanov, V. I. J. Phys. Chem. A,2000, 104: 8315

    3. [3]

      3. Flouzat, C.; Besson, Y.; Mattio, A.; Bonnet, J.; Guillaumet, G.J. Med. Chem., 1993, 36: 497

    4. [4]

      4. Sobolewski, A. L.; Domecke, W. Chem. Phys. Lett., 1996, 250:428

    5. [5]

      5. Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev., 2003,103: 3899

    6. [6]

      6. Bella, S. D.; Fragalá, I. L.; Ratner, M. A.; Marks, T. J. J. Am.Chem. Soc., 1993, 115: 682

    7. [7]

      7. Coe, B. J.; Harris, J. A.; Brunschwig, B. S. ; Garin, J.; Orduna, J.;Coles, S. J.; Hursthouse, M. B. J. Am. Chem. Soc., 2004, 126:10418

    8. [8]

      8. Jiao, G. S.; Thoresen, L. H.; Burgess, K. J. Am. Chem. Soc., 2003,125: 14668

    9. [9]

      9. Krasovitskii, B. M.; Bolotin, B. M. Organic luminescent materials.NewYork: VCHPublishers, 1988

    10. [10]

      10. Bunz, U. H. F. Chem. Rev., 2000, 100: 1605.

    11. [11]

      11. Hughes, G.; Bryce, M. R. J. Mater. Chem., 2005, 15: 94.

    12. [12]

      12. Kelley, T. W.; Baude, P. F.; Gerlach, C.; Ender, D. E.; Muyres, D.;Haase, M. A.; Vogel, D. E.; Theiss, S. D. Chem. Mater., 2004, 16:4413

    13. [13]

      13. Shirota, Y.; Kageyama, H. Chem. Rev., 2007, 107: 953

    14. [14]

      14. Lo thetidis, S. Mater. Sci. Eng. B, 2008, 152: 96

    15. [15]

      15. Kirilova, E. M.; Sergey, V. B.; Kirilov, G. K.; Kalnina, I.;Gerbreder, V. J. Lumin., 2009, 129: 1827

    16. [16]

      16. Nepraš, M.; Machalický, O.; Šeps, M.; Hrdina, R.; Kapusta, P.;Fidler, V. Dye and Pigments, 1997, 35: 31

    17. [17]

      17. Kosower, E. M.; Dodiuk, H. J. Am. Chem. Soc., 1975, 97: 2167

    18. [18]

      18. Hohenberg, P.; Kohn, W. Phys. Rev. B, 1964, 136: 864

    19. [19]

      19. Kohn, W.; Sham, L. J. Phys. Rev. A, 1965, 140: 1133

    20. [20]

      20. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785

    21. [21]

      21. Becke, A. D. Phys. Rev. A, 1988, 38: 3098

    22. [22]

      22. Perdew, J. P. Phys. Rev. B, 1986, 33: 8822

    23. [23]

      23. Lynch, B. J.; Fast, P. L.; Harris, M.; Thruhlar, D. G. J. Phys. Chem.A, 2000, 104: 4811

    24. [24]

      24. Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A, 2003,107: 1384

    25. [25]

      25. Cramer, C. J.; Truhlar, D. G. Chem. Rev., 1999, 99: 2161

    26. [26]

      26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03.Revision A.01. Pittsburgh, PA: Gaussian Inc., 2003

    27. [27]

      27. Wang, Y. L.; Wu, G. S. Acta Phys. -Chim. Sin., 2008, 24: 552[王溢磊,吴国是. 物理化学学报, 2008, 24: 552]

    28. [28]

      28. He, R. X.; Duan, X. H.; Li, X. Y. J. Phys. Chem. A, 2005, 109:415429. He, R. X.; Li, X. Y. Chem. Phys., 2007, 332: 325


  • 加载中
    1. [1]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    13. [13]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    17. [17]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    18. [18]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    19. [19]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(1369)
  • Abstract views(3052)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return