Citation:
GUO Yu-Hua, PU Min, CHEN Biao-Hua. Adsorption of Linear C2-C5 Olefins on HYand H-ZSM-5 Zeolites[J]. Acta Physico-Chimica Sinica,
;2010, 26(09): 2503-2509.
doi:
10.3866/PKU.WHXB20100839
-
The adsorption properties of linear C2-C5 olefins on HY and H-ZSM-5 zeolites were studied by the ONIOM(B3LYP/6-311++G(d,p):UFF)method. The results indicate that microcosmic interactions of the olefin molecules with the Br?nsted acid sites of the zeolites lead to the formation of π-complexes. The adsorption energies of olefins on zeolites increase with an increase in the number of carbon atoms, and the amount of increase is approximately constant (HY zeolites: ca 12 kJ·mol-1; H-ZSM-5 zeolites: ca 25 kJ·mol-1), which agrees well with the adsorption properties of alkanes on zeolites. The position of the double bond has a fairly large effect on the adsorption energies of olefins. The adsorption energies of 2-olefins are much higher than those of 1-olefins. The adsorption energies of olefins on the different types of zeolites also show a significant difference. The adsorption energies of olefins on small pore H-ZSM-5 zeolites are much larger than those on large pore HY zeolites. Furthermore, the confinement effect in the different types of zeolites is more obvious when the number of carbon atoms increase. From the microstructure, the distance between the adsorbent molecule and the acidic proton in the H-ZSM-5 zeolite is much bigger than that between the adsorbent molecule and the acidic proton in the HY zeolite. These are mainly attributed to differences in the van der Waals interactions for the different types of zeolites, and the small pore zeolites have much stronger van der Waals interactions. Frontier orbital calculations indicate that the catalytic activity of the large pore HY zeolite is similar for small olefins while the catalytic activity of the small pore H-ZSM-5 zeolite decreases slightly with increasing carbon number.
-
Keywords:
-
Adsorption
, - Olefin,
- Zeolite,
- ONIOM
-
-
-
-
[1]
1. Derouane, E. G.; Andre, J. M.; Lucas, A. A. J. Catal., 1988, 110: 58
-
[2]
2. Madeira, F. F.; Gnep, N. S.; Magnoux, P.; Maury, S.; Cadran, N. Appl. Catal. A, 2009, 367: 39
-
[3]
3. Derouane, E. G.; Chang, C. D. Microporous Mesoporous Mat., 2000, 35-36: 425
-
[4]
4. Derouane, E. G. J. Mol. Catal. A, 1998, 134: 29
-
[5]
5. Kontnik-Matecka, B.; Górska, M.; Eysymontt, J.; Sa覥ek, A. J. Mol. Struct., 1982, 80: 199
-
[6]
6. White, J. L.; Beck, L. W.; Haw, J. F. J. Am. Chem. Soc., 1992, 114: 6182
-
[7]
7. Kondo, J. N.; Domen, K. J. Mol. Catal. A, 2003, 199: 27
-
[8]
8. Cant, N. W.; Hall, W. K. J. Catal., 1972, 25: 161
-
[9]
9. Yoda, E.; Kondo, J. N.; Domen, K. J. Phys. Chem. B, 2005, 109: 1464
-
[10]
10. Gee, J. C.; Prampin, D. S. Appl. Catal. A, 2009, 360: 71
-
[11]
11. Spoto, G.; Bordiga, S.; Ricchiardi, G.; Scarano, D.; Zecchina, A.; Borello, E. J. Chem. Soc. Faraday Trans., 1994, 90: 2827
-
[12]
12. Barrer, R. M. J. Colloid Interface Sci., 1966, 21: 415
-
[13]
13. Maesen, T. L. M.; Beerdsen, E.; Calero, S.; Dubbeldam, D.; Smit,B. J. Catal., 2006, 237: 278
-
[14]
14. Webster, C. E.; Cottone III, A.; Dra , R. S. J. Am. Chem. Soc., 1999, 121: 12127
-
[15]
15. M?ller, A.; Guimaraes, A. P.; Gl?ser, R.; Staudt, R. Microporous Mesoporous Mat., 2009, 125: 23
-
[16]
16. Frash, M. V.; Kazansky, V. B.; Rigby, A. M.; van Santen, R. A. J. Phys. Chem. B, 1998, 102: 2232
-
[17]
17. Rigby, A. M.; Frash, M. V. J. Mol. Catal. A, 1997, 126: 61
-
[18]
18. Zheng, X.; Blowers, P. J. Mol. Catal. A, 2006, 246: 1
-
[19]
19. Nieminen, V.; Sierka, M.; Murzin, D. Y.; Sauer J. J. Catal., 2005, 231: 393
-
[20]
20. Khaliullin, R. Z.; Bell, A. T.; Kazansky, V. B. J. Phys. Chem. A, 2001, 105: 10454
-
[21]
21. Banach, E.; Kozyra, P.; Rejmak, P.; Broc覥awik, E.; Datka, J. Catal. Today, 2008, 137: 493
-
[22]
22. Kasuriya, S.; Namuangruk, S.; Treesukol, P., Tirtowidjojo, M.; Limtrakul, J. J. Catal., 2003, 219: 320
-
[23]
23. Maihom, T.; Boekfa, B.; Sirijaraensre, J.; Nanok, T.; Probst, M.; Limtrakul, J. J. Phys. Chem. C, 2009, 113: 6654
-
[24]
24. Kalita, B.; Deka, R. C. J. Phys. Chem. C, 2009, 113: 16070
-
[25]
25. Namuangruk, S.; Khongpracha, P.; Pantu, P.; Limtrakul, J. J. Phys. Chem. B, 2006, 110: 25950
-
[26]
26. Clark, L. A.; Sierka, M.; Sauer, J. J. Am. Chem. Soc., 2003, 125: 2136
-
[27]
27. Boronat, M.; Viruela, P. M.; Corma, A. J. Am. Chem. Soc., 2004, 126: 3300
-
[28]
28. Zheng, A. M.; Chen, L.; Yang, J.; Zhang, M. J.; Su, Y. C.; Yue, Y.; Ye, C. H.; Deng, F. J. Phys. Chem. B, 2005, 109: 24273
-
[29]
29. Zheng, A. M.; Chen, L.; Yang, J.; Yue, Y.; Ye, C. H.; Lu, X.; Deng, F. Chem. Commun., 2005: 2474
-
[30]
30. Zheng, A. M.; Wang, L.; Chen, L.; Yue, Y.; Ye, C. H.; Lu, X.; Deng, F. ChemPhysChem, 2007, 8: 231
-
[31]
31. Wang, S. P.; Wang, Y. L.; Cao, L.; Xing, S. Y.; Zhou, D. H. Chin. J. Catal., 2009, 30: 305 [王善鹏,王伊蕾, 曹亮,邢双英,周丹 红.催化学报, 2009, 30: 305]
-
[32]
32. Olson, D. H.; Dempsey, E. J. Catal., 1969, 13: 221
-
[33]
33. van Koningsveld, H.; van Bekkum, H.; Jansen, J. C. Acta Crystallogr. B, 1987, 43: 127
-
[34]
34. Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press, 1989: 1-325
-
[35]
35. Becke, A. D. Phys. Rev. A, 1988, 38: 3098
-
[36]
36. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785
-
[37]
37. Pantu, P.; Boekfa, B.; Limtrakul, J. J. Mol. Catal. A, 2007, 277: 171
-
[38]
38. Bobuatong, K.; Limtrakul, J. Appl. Catal. A, 2003, 253: 49
-
[39]
39. Rungsirisakun, R.; Jansang, B.; Pantu, P.; Limtrakul, J. J. Mol. Struct., 2005, 733: 239
-
[40]
40. Namuangruk, S.; Tantanak, D.; Limtrakul, J. J. Mol. Catal., 2006, 256: 113
-
[41]
41. Froese, R. D. J.; Morokuma, K. Chem. Phys. Lett., 1999, 305: 419
-
[42]
42. Froese, R. D. J.; Morokuma, K. J. Phys. Chem. A, 1999, 103: 4580
-
[43]
43. Vreven, T.; Morokuma, K. J. Chem. Phys., 1999, 111: 8799
-
[44]
44. Vreven, T.; Morokuma, K. J. Phys. Chem. A, 2002, 106: 6167
-
[45]
45. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision B.04. Pittsburgh, PA: Gaussian Inc., 2003
-
[46]
46. Kondo, J. N.; Domen, K.; Wakabayashi, F. Microporous Mesoporous Mat., 1998, 21: 429
-
[47]
47. Mortier,W. J. Stud. Surf. Sci. Catal., 1988, 37: 253
-
[48]
48. Datka, J.; Boczar, M. React. Kinet. Catal. Lett., 1993, 51: 161
-
[49]
49. Benco, L.; Hafner, J.; Hutschka, F.; Toulhoat, H. J. Phys. Chem. B, 2003, 107: 9756
-
[50]
50. van Bokhoven, J. A.; Williams, B. A.; Ji, W.; Koningsberger, D. C.; Kung, H. H.; Miller, J. T. J. Catal., 2004, 224: 50
-
[51]
51. Babitz, S. M.; Williams, B. A.; Miller, J. T.; Snurr, R. Q.; Haag, W. O.; Kung, H. H. Appl. Catal. A, 1999, 179: 71
-
[1]
-
-
-
[1]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[2]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[3]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[4]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[5]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[6]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[7]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[8]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[9]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[10]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[11]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[12]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[13]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[14]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[15]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[16]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[17]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[18]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[19]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[20]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[1]
Metrics
- PDF Downloads(1170)
- Abstract views(3317)
- HTML views(6)