Citation: GUO Yu-Hua, PU Min, CHEN Biao-Hua. Adsorption of Linear C2-C5 Olefins on HYand H-ZSM-5 Zeolites[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2503-2509. doi: 10.3866/PKU.WHXB20100839 shu

Adsorption of Linear C2-C5 Olefins on HYand H-ZSM-5 Zeolites

  • Received Date: 2 February 2010
    Available Online: 2 July 2010

    Fund Project: 国家重点基础研究发展规划项目(973) (2004CB217804)资助 (973) (2004CB217804)

  • The adsorption properties of linear C2-C5 olefins on HY and H-ZSM-5 zeolites were studied by the ONIOM(B3LYP/6-311++G(d,p):UFF)method. The results indicate that microcosmic interactions of the olefin molecules with the Br?nsted acid sites of the zeolites lead to the formation of π-complexes. The adsorption energies of olefins on zeolites increase with an increase in the number of carbon atoms, and the amount of increase is approximately constant (HY zeolites: ca 12 kJ·mol-1; H-ZSM-5 zeolites: ca 25 kJ·mol-1), which agrees well with the adsorption properties of alkanes on zeolites. The position of the double bond has a fairly large effect on the adsorption energies of olefins. The adsorption energies of 2-olefins are much higher than those of 1-olefins. The adsorption energies of olefins on the different types of zeolites also show a significant difference. The adsorption energies of olefins on small pore H-ZSM-5 zeolites are much larger than those on large pore HY zeolites. Furthermore, the confinement effect in the different types of zeolites is more obvious when the number of carbon atoms increase. From the microstructure, the distance between the adsorbent molecule and the acidic proton in the H-ZSM-5 zeolite is much bigger than that between the adsorbent molecule and the acidic proton in the HY zeolite. These are mainly attributed to differences in the van der Waals interactions for the different types of zeolites, and the small pore zeolites have much stronger van der Waals interactions. Frontier orbital calculations indicate that the catalytic activity of the large pore HY zeolite is similar for small olefins while the catalytic activity of the small pore H-ZSM-5 zeolite decreases slightly with increasing carbon number.

  • 加载中
    1. [1]

      1. Derouane, E. G.; Andre, J. M.; Lucas, A. A. J. Catal., 1988, 110: 58

    2. [2]

      2. Madeira, F. F.; Gnep, N. S.; Magnoux, P.; Maury, S.; Cadran, N. Appl. Catal. A, 2009, 367: 39

    3. [3]

      3. Derouane, E. G.; Chang, C. D. Microporous Mesoporous Mat., 2000, 35-36: 425

    4. [4]

      4. Derouane, E. G. J. Mol. Catal. A, 1998, 134: 29

    5. [5]

      5. Kontnik-Matecka, B.; Górska, M.; Eysymontt, J.; Sa覥ek, A. J. Mol. Struct., 1982, 80: 199

    6. [6]

      6. White, J. L.; Beck, L. W.; Haw, J. F. J. Am. Chem. Soc., 1992, 114: 6182

    7. [7]

      7. Kondo, J. N.; Domen, K. J. Mol. Catal. A, 2003, 199: 27

    8. [8]

      8. Cant, N. W.; Hall, W. K. J. Catal., 1972, 25: 161

    9. [9]

      9. Yoda, E.; Kondo, J. N.; Domen, K. J. Phys. Chem. B, 2005, 109: 1464

    10. [10]

      10. Gee, J. C.; Prampin, D. S. Appl. Catal. A, 2009, 360: 71

    11. [11]

      11. Spoto, G.; Bordiga, S.; Ricchiardi, G.; Scarano, D.; Zecchina, A.; Borello, E. J. Chem. Soc. Faraday Trans., 1994, 90: 2827

    12. [12]

      12. Barrer, R. M. J. Colloid Interface Sci., 1966, 21: 415

    13. [13]

      13. Maesen, T. L. M.; Beerdsen, E.; Calero, S.; Dubbeldam, D.; Smit,B. J. Catal., 2006, 237: 278

    14. [14]

      14. Webster, C. E.; Cottone III, A.; Dra , R. S. J. Am. Chem. Soc., 1999, 121: 12127

    15. [15]

      15. M?ller, A.; Guimaraes, A. P.; Gl?ser, R.; Staudt, R. Microporous Mesoporous Mat., 2009, 125: 23

    16. [16]

      16. Frash, M. V.; Kazansky, V. B.; Rigby, A. M.; van Santen, R. A. J. Phys. Chem. B, 1998, 102: 2232

    17. [17]

      17. Rigby, A. M.; Frash, M. V. J. Mol. Catal. A, 1997, 126: 61

    18. [18]

      18. Zheng, X.; Blowers, P. J. Mol. Catal. A, 2006, 246: 1

    19. [19]

      19. Nieminen, V.; Sierka, M.; Murzin, D. Y.; Sauer J. J. Catal., 2005, 231: 393

    20. [20]

      20. Khaliullin, R. Z.; Bell, A. T.; Kazansky, V. B. J. Phys. Chem. A, 2001, 105: 10454

    21. [21]

      21. Banach, E.; Kozyra, P.; Rejmak, P.; Broc覥awik, E.; Datka, J. Catal. Today, 2008, 137: 493

    22. [22]

      22. Kasuriya, S.; Namuangruk, S.; Treesukol, P., Tirtowidjojo, M.; Limtrakul, J. J. Catal., 2003, 219: 320

    23. [23]

      23. Maihom, T.; Boekfa, B.; Sirijaraensre, J.; Nanok, T.; Probst, M.; Limtrakul, J. J. Phys. Chem. C, 2009, 113: 6654

    24. [24]

      24. Kalita, B.; Deka, R. C. J. Phys. Chem. C, 2009, 113: 16070

    25. [25]

      25. Namuangruk, S.; Khongpracha, P.; Pantu, P.; Limtrakul, J. J. Phys. Chem. B, 2006, 110: 25950

    26. [26]

      26. Clark, L. A.; Sierka, M.; Sauer, J. J. Am. Chem. Soc., 2003, 125: 2136

    27. [27]

      27. Boronat, M.; Viruela, P. M.; Corma, A. J. Am. Chem. Soc., 2004, 126: 3300

    28. [28]

      28. Zheng, A. M.; Chen, L.; Yang, J.; Zhang, M. J.; Su, Y. C.; Yue, Y.; Ye, C. H.; Deng, F. J. Phys. Chem. B, 2005, 109: 24273

    29. [29]

      29. Zheng, A. M.; Chen, L.; Yang, J.; Yue, Y.; Ye, C. H.; Lu, X.; Deng, F. Chem. Commun., 2005: 2474

    30. [30]

      30. Zheng, A. M.; Wang, L.; Chen, L.; Yue, Y.; Ye, C. H.; Lu, X.; Deng, F. ChemPhysChem, 2007, 8: 231

    31. [31]

      31. Wang, S. P.; Wang, Y. L.; Cao, L.; Xing, S. Y.; Zhou, D. H. Chin. J. Catal., 2009, 30: 305 [王善鹏,王伊蕾, 曹亮,邢双英,周丹 红.催化学报, 2009, 30: 305]

    32. [32]

      32. Olson, D. H.; Dempsey, E. J. Catal., 1969, 13: 221

    33. [33]

      33. van Koningsveld, H.; van Bekkum, H.; Jansen, J. C. Acta Crystallogr. B, 1987, 43: 127

    34. [34]

      34. Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press, 1989: 1-325

    35. [35]

      35. Becke, A. D. Phys. Rev. A, 1988, 38: 3098

    36. [36]

      36. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785

    37. [37]

      37. Pantu, P.; Boekfa, B.; Limtrakul, J. J. Mol. Catal. A, 2007, 277: 171

    38. [38]

      38. Bobuatong, K.; Limtrakul, J. Appl. Catal. A, 2003, 253: 49

    39. [39]

      39. Rungsirisakun, R.; Jansang, B.; Pantu, P.; Limtrakul, J. J. Mol. Struct., 2005, 733: 239

    40. [40]

      40. Namuangruk, S.; Tantanak, D.; Limtrakul, J. J. Mol. Catal., 2006, 256: 113

    41. [41]

      41. Froese, R. D. J.; Morokuma, K. Chem. Phys. Lett., 1999, 305: 419

    42. [42]

      42. Froese, R. D. J.; Morokuma, K. J. Phys. Chem. A, 1999, 103: 4580

    43. [43]

      43. Vreven, T.; Morokuma, K. J. Chem. Phys., 1999, 111: 8799

    44. [44]

      44. Vreven, T.; Morokuma, K. J. Phys. Chem. A, 2002, 106: 6167

    45. [45]

      45. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision B.04. Pittsburgh, PA: Gaussian Inc., 2003

    46. [46]

      46. Kondo, J. N.; Domen, K.; Wakabayashi, F. Microporous Mesoporous Mat., 1998, 21: 429

    47. [47]

      47. Mortier,W. J. Stud. Surf. Sci. Catal., 1988, 37: 253

    48. [48]

      48. Datka, J.; Boczar, M. React. Kinet. Catal. Lett., 1993, 51: 161

    49. [49]

      49. Benco, L.; Hafner, J.; Hutschka, F.; Toulhoat, H. J. Phys. Chem. B, 2003, 107: 9756

    50. [50]

      50. van Bokhoven, J. A.; Williams, B. A.; Ji, W.; Koningsberger, D. C.; Kung, H. H.; Miller, J. T. J. Catal., 2004, 224: 50

    51. [51]

      51. Babitz, S. M.; Williams, B. A.; Miller, J. T.; Snurr, R. Q.; Haag, W. O.; Kung, H. H. Appl. Catal. A, 1999, 179: 71


  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    12. [12]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

Metrics
  • PDF Downloads(1170)
  • Abstract views(3268)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return