Citation:
XU Hai-Di, QIU Chun-Tian, ZHANG Qiu-Lin, LIN Tao, NG Mao-Chu, CHEN Yao-Qiang. Influence of Tungsten Oxide on Selective Catalytic Reduction of NOx with NH3 over MnOx -CeO2 /ZrO2-TiO2Monolith Catalyst[J]. Acta Physico-Chimica Sinica,
;2010, 26(09): 2449-2454.
doi:
10.3866/PKU.WHXB20100838
-
MnOx-CeO2/WO3/ZrO2-TiO2monolithic catalyst was prepared by ZrO2-TiO2 as support, MnOx-CeO2 as active components and WO3 as the promoter. The influence of the different mass fractions (w) of WO3 on the NH3-selective catalytic reduction (NH3-SCR) of NOx performance at low temperature was studied. The catalysts were characterized by N2 adsorption-desorption at low temperature, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and NH3 temperature-programmed desorption (NH3-TPD). The experimental results showed that, compared with the catalyst without WO3, the catalyst with 10.0% (w)WO3 had od texture properties, middle strong acid sites, and higher Oxidation performance. The results of activity test showed that the monolith catalyst had not only od catalytic activity at low temperature but also a wide activity temperature window. The NOx conversion is more than 90%in the temperature range of 144-374oC at the space velocity of 10000 h-1. It shows potential application in de-NOx at low-temperature.
-
-
-
[1]
1. Rahkamaa-Tolonena, K.; Maunula, T.; Lomma, M.; Huuhtanen, M.; Keiski, R. L. Catal. Today, 2005, 100: 217
-
[2]
2. Bosch, H.; Janssen, F. J. J. G.; van den Kerkhof, F. M. G.; Oldenziel, J.; van Ommen, J. C.; Ross, J. R. H. Appl. Catal., 1986, 25: 239
-
[3]
3. Bosch, H.; Janssen, F. Catal. Today, 1988, 2: 369
-
[4]
4. Kijlstra,W. S.; Brands, D. S.; Smit, H. I.; Poels, E. K.; Bliek, A. J. Catal., 1997, 171: 219
-
[5]
5. Blanco, J.; Avila, P.; Suárez, S.; Martín, J. A.; Knapp, C. Appl. Catal. B-Environ., 2000, 28: 235
-
[6]
6. Qi, G. S.; Yang, R. T. J. Catal., 2003, 217: 434
-
[7]
7. Ramis, G.; Larrubia, M. A. J. Mol. Catal. A-Chem., 2004, 215 (122): 161
-
[8]
8. Chen, L.; Li, J. H.; Ge, M. F. J. Phys. Chem. C, 2009, 113: 21177
-
[9]
9. Ka?par, J.; Fornasiero, P.; Hickey, N. Catal. Today, 2003, 77: 419
-
[10]
10. Tang, X. L.; Hao, J. M.; Xu, W. G.; Li, J. H. Catal. Commun., 2007, 8: 329
-
[11]
11. Donovan, A. P.; Balu, S. U.; Panagiotis, G. S. J. Catal., 2004, 221: 421
-
[12]
12. Li, J. H.; Chen, J.; Ke, R.; Luo, C. K.; Hao, J. M. Catal. Commun., 2007, 8: 1896
-
[13]
13. Qi, G. S.; Yang, R. T.; Chang, R. Appl. Catal. B-Environ., 2004, 51: 93
-
[14]
14. Qi, G. S.; Yang, R. T. J. Phys. Chem. B, 2004, 108: 15738
-
[15]
15. Forzatti, P. Appl. Catal. A-Gen., 2001, 222: 221
-
[16]
16. Apostolescu, N.; Geiger, B.; Hizbullah, K.; Jan, M. T.; Kureti, S.; Reichert, D.; Schott, F.; Weisweiler, W. Appl. Catal. B-Environ., 2006, 62: 104
-
[17]
17. Reddy, B. M.; Khan, A. Catal. Rev., 2005, 47(2) : 257
-
[18]
18. Li, W.; Lin, T.; Zhang, Q. L.; ng, M. C.; Chen, Y. Q. Chin. J. Catal., 2009, 30(2):104 [李伟,林涛, 张秋林, 龚茂初, 陈耀强.催化学报, 2009, 30(2): 104]
-
[19]
19. Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. Chem. Mater., 2000, 12: 3158
-
[20]
20. Huang, H. Y.; Yang, R. T. Langmuir, 2001, 17: 4997
-
[21]
21. Pena, D. A.; Uphade, B. S.; Smirniotis, P. G. J. Catal., 2004, 221: 421
-
[22]
22. Due-Hansen, J.; Kustov, A. L.; Rasmussen, S. B.; Fehrmann, R.; Christensen, C. H. Appl. Catal. B-Environ., 2006, 66: 161
-
[23]
23. Tang, X. L. The technology and reaction mechanismof low temperature selective catalytic reduction of NOx. Beijing: Metallurgical Industry Press, 2007: 109 [唐晓龙.低温选择性催 化还原NOx技术及反应机理.北京:冶金工业出版社, 2007: 109]
-
[24]
24. Juan, P. H.; Rafael, A.; Guillermo, M. Appl. Surf. Sci., 2000, 161 (3-4): 301
-
[25]
25. Falcal, L.; Jerome, P.; Alain, A. Appl. Surf. Sci., 2002, 195: 236
-
[26]
26. Kijlstra, W. S.; Brand, D. S.; Smit, H. I.; Poels, E. K.; Blief, A. J. Catal., 1997, 171: 208
-
[27]
27. Kijlstra, W. S.; Brand, D. S.; Smit, H. I.; Poels, E. K.; Blief, A. J. Catal., 1997, 171: 219
-
[28]
28. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Mullenberg, G. E. Handbook of X-ray photoelectron spectroscopy. Eden Prairie: Perking Elmer Corp., 1979
-
[29]
29. Busca, G.; Larrubia, M. A.; Arrighi, L.; Ramis, G. Catal. Today, 2005, 107-108: 139
-
[30]
30. Alemany, L. J.; Lietti, L.; Ferlazzo, N.; Forzatti, P.; Busca, G.; Giamello, E.; Bregani, F. J. Catal., 1995, 155: 117
-
[31]
31. Lietti, L.; Alemany, J. L.; Forzatti, P. Catal. Today, 1996, 29: 143
-
[32]
32. Lietti, L. Appl. Catal. B-Environ., 1996, 10(4): 281
-
[33]
33. Ramis, G.; Cristiani, C.; Elmi, M. S.; Villa, P. L.; Busca, G. J. Mol. Catal., 1990, 61: 319
-
[34]
34. Kobayashi, M.; Miyoshi, K. Appl. Catal. B-Environ., 2007, 72: 253
-
[1]
-
-
-
[1]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[2]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[3]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[4]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[5]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[6]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[7]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[8]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[9]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[10]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[11]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[12]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[13]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[14]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[15]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[16]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[17]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[18]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[19]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[20]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[1]
Metrics
- PDF Downloads(1322)
- Abstract views(3179)
- HTML views(91)