Citation: XU Hai-Di, QIU Chun-Tian, ZHANG Qiu-Lin, LIN Tao, NG Mao-Chu, CHEN Yao-Qiang. Influence of Tungsten Oxide on Selective Catalytic Reduction of NOx with NH3 over MnOx -CeO2 /ZrO2-TiO2Monolith Catalyst[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2449-2454. doi: 10.3866/PKU.WHXB20100838 shu

Influence of Tungsten Oxide on Selective Catalytic Reduction of NOx with NH3 over MnOx -CeO2 /ZrO2-TiO2Monolith Catalyst

  • Received Date: 2 February 2010
    Available Online: 1 July 2010

    Fund Project: 国家自然科学基金重点项目(20333030) (20333030)国家自然科学基金(20273043)资助 (20273043)

  • MnOx-CeO2/WO3/ZrO2-TiO2monolithic catalyst was prepared by ZrO2-TiO2 as support, MnOx-CeO2 as active components and WO3 as the promoter. The influence of the different mass fractions (w) of WO3 on the NH3-selective catalytic reduction (NH3-SCR) of NOx performance at low temperature was studied. The catalysts were characterized by N2 adsorption-desorption at low temperature, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and NH3 temperature-programmed desorption (NH3-TPD). The experimental results showed that, compared with the catalyst without WO3, the catalyst with 10.0% (w)WO3 had od texture properties, middle strong acid sites, and higher Oxidation performance. The results of activity test showed that the monolith catalyst had not only od catalytic activity at low temperature but also a wide activity temperature window. The NOx conversion is more than 90%in the temperature range of 144-374oC at the space velocity of 10000 h-1. It shows potential application in de-NOx at low-temperature.

  • 加载中
    1. [1]

      1. Rahkamaa-Tolonena, K.; Maunula, T.; Lomma, M.; Huuhtanen, M.; Keiski, R. L. Catal. Today, 2005, 100: 217

    2. [2]

      2. Bosch, H.; Janssen, F. J. J. G.; van den Kerkhof, F. M. G.; Oldenziel, J.; van Ommen, J. C.; Ross, J. R. H. Appl. Catal., 1986, 25: 239

    3. [3]

      3. Bosch, H.; Janssen, F. Catal. Today, 1988, 2: 369

    4. [4]

      4. Kijlstra,W. S.; Brands, D. S.; Smit, H. I.; Poels, E. K.; Bliek, A. J. Catal., 1997, 171: 219

    5. [5]

      5. Blanco, J.; Avila, P.; Suárez, S.; Martín, J. A.; Knapp, C. Appl. Catal. B-Environ., 2000, 28: 235

    6. [6]

      6. Qi, G. S.; Yang, R. T. J. Catal., 2003, 217: 434

    7. [7]

      7. Ramis, G.; Larrubia, M. A. J. Mol. Catal. A-Chem., 2004, 215 (122): 161

    8. [8]

      8. Chen, L.; Li, J. H.; Ge, M. F. J. Phys. Chem. C, 2009, 113: 21177

    9. [9]

      9. Ka?par, J.; Fornasiero, P.; Hickey, N. Catal. Today, 2003, 77: 419

    10. [10]

      10. Tang, X. L.; Hao, J. M.; Xu, W. G.; Li, J. H. Catal. Commun., 2007, 8: 329

    11. [11]

      11. Donovan, A. P.; Balu, S. U.; Panagiotis, G. S. J. Catal., 2004, 221: 421

    12. [12]

      12. Li, J. H.; Chen, J.; Ke, R.; Luo, C. K.; Hao, J. M. Catal. Commun., 2007, 8: 1896

    13. [13]

      13. Qi, G. S.; Yang, R. T.; Chang, R. Appl. Catal. B-Environ., 2004, 51: 93

    14. [14]

      14. Qi, G. S.; Yang, R. T. J. Phys. Chem. B, 2004, 108: 15738

    15. [15]

      15. Forzatti, P. Appl. Catal. A-Gen., 2001, 222: 221

    16. [16]

      16. Apostolescu, N.; Geiger, B.; Hizbullah, K.; Jan, M. T.; Kureti, S.; Reichert, D.; Schott, F.; Weisweiler, W. Appl. Catal. B-Environ., 2006, 62: 104

    17. [17]

      17. Reddy, B. M.; Khan, A. Catal. Rev., 2005, 47(2) : 257

    18. [18]

      18. Li, W.; Lin, T.; Zhang, Q. L.; ng, M. C.; Chen, Y. Q. Chin. J. Catal., 2009, 30(2):104 [李伟,林涛, 张秋林, 龚茂初, 陈耀强.催化学报, 2009, 30(2): 104]

    19. [19]

      19. Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. Chem. Mater., 2000, 12: 3158

    20. [20]

      20. Huang, H. Y.; Yang, R. T. Langmuir, 2001, 17: 4997

    21. [21]

      21. Pena, D. A.; Uphade, B. S.; Smirniotis, P. G. J. Catal., 2004, 221: 421

    22. [22]

      22. Due-Hansen, J.; Kustov, A. L.; Rasmussen, S. B.; Fehrmann, R.; Christensen, C. H. Appl. Catal. B-Environ., 2006, 66: 161

    23. [23]

      23. Tang, X. L. The technology and reaction mechanismof low temperature selective catalytic reduction of NOx. Beijing: Metallurgical Industry Press, 2007: 109 [唐晓龙.低温选择性催 化还原NOx技术及反应机理.北京:冶金工业出版社, 2007: 109]

    24. [24]

      24. Juan, P. H.; Rafael, A.; Guillermo, M. Appl. Surf. Sci., 2000, 161 (3-4): 301

    25. [25]

      25. Falcal, L.; Jerome, P.; Alain, A. Appl. Surf. Sci., 2002, 195: 236

    26. [26]

      26. Kijlstra, W. S.; Brand, D. S.; Smit, H. I.; Poels, E. K.; Blief, A. J. Catal., 1997, 171: 208

    27. [27]

      27. Kijlstra, W. S.; Brand, D. S.; Smit, H. I.; Poels, E. K.; Blief, A. J. Catal., 1997, 171: 219

    28. [28]

      28. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Mullenberg, G. E. Handbook of X-ray photoelectron spectroscopy. Eden Prairie: Perking Elmer Corp., 1979

    29. [29]

      29. Busca, G.; Larrubia, M. A.; Arrighi, L.; Ramis, G. Catal. Today, 2005, 107-108: 139

    30. [30]

      30. Alemany, L. J.; Lietti, L.; Ferlazzo, N.; Forzatti, P.; Busca, G.; Giamello, E.; Bregani, F. J. Catal., 1995, 155: 117

    31. [31]

      31. Lietti, L.; Alemany, J. L.; Forzatti, P. Catal. Today, 1996, 29: 143

    32. [32]

      32. Lietti, L. Appl. Catal. B-Environ., 1996, 10(4): 281

    33. [33]

      33. Ramis, G.; Cristiani, C.; Elmi, M. S.; Villa, P. L.; Busca, G. J. Mol. Catal., 1990, 61: 319

    34. [34]

      34. Kobayashi, M.; Miyoshi, K. Appl. Catal. B-Environ., 2007, 72: 253


  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(1322)
  • Abstract views(3130)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return