Citation: XU Hai-Di, QIU Chun-Tian, ZHANG Qiu-Lin, LIN Tao, NG Mao-Chu, CHEN Yao-Qiang. Influence of Tungsten Oxide on Selective Catalytic Reduction of NOx with NH3 over MnOx -CeO2 /ZrO2-TiO2Monolith Catalyst[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2449-2454. doi: 10.3866/PKU.WHXB20100838 shu

Influence of Tungsten Oxide on Selective Catalytic Reduction of NOx with NH3 over MnOx -CeO2 /ZrO2-TiO2Monolith Catalyst

  • Received Date: 2 February 2010
    Available Online: 1 July 2010

    Fund Project: 国家自然科学基金重点项目(20333030) (20333030)国家自然科学基金(20273043)资助 (20273043)

  • MnOx-CeO2/WO3/ZrO2-TiO2monolithic catalyst was prepared by ZrO2-TiO2 as support, MnOx-CeO2 as active components and WO3 as the promoter. The influence of the different mass fractions (w) of WO3 on the NH3-selective catalytic reduction (NH3-SCR) of NOx performance at low temperature was studied. The catalysts were characterized by N2 adsorption-desorption at low temperature, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and NH3 temperature-programmed desorption (NH3-TPD). The experimental results showed that, compared with the catalyst without WO3, the catalyst with 10.0% (w)WO3 had od texture properties, middle strong acid sites, and higher Oxidation performance. The results of activity test showed that the monolith catalyst had not only od catalytic activity at low temperature but also a wide activity temperature window. The NOx conversion is more than 90%in the temperature range of 144-374oC at the space velocity of 10000 h-1. It shows potential application in de-NOx at low-temperature.

  • 加载中
    1. [1]

      1. Rahkamaa-Tolonena, K.; Maunula, T.; Lomma, M.; Huuhtanen, M.; Keiski, R. L. Catal. Today, 2005, 100: 217

    2. [2]

      2. Bosch, H.; Janssen, F. J. J. G.; van den Kerkhof, F. M. G.; Oldenziel, J.; van Ommen, J. C.; Ross, J. R. H. Appl. Catal., 1986, 25: 239

    3. [3]

      3. Bosch, H.; Janssen, F. Catal. Today, 1988, 2: 369

    4. [4]

      4. Kijlstra,W. S.; Brands, D. S.; Smit, H. I.; Poels, E. K.; Bliek, A. J. Catal., 1997, 171: 219

    5. [5]

      5. Blanco, J.; Avila, P.; Suárez, S.; Martín, J. A.; Knapp, C. Appl. Catal. B-Environ., 2000, 28: 235

    6. [6]

      6. Qi, G. S.; Yang, R. T. J. Catal., 2003, 217: 434

    7. [7]

      7. Ramis, G.; Larrubia, M. A. J. Mol. Catal. A-Chem., 2004, 215 (122): 161

    8. [8]

      8. Chen, L.; Li, J. H.; Ge, M. F. J. Phys. Chem. C, 2009, 113: 21177

    9. [9]

      9. Ka?par, J.; Fornasiero, P.; Hickey, N. Catal. Today, 2003, 77: 419

    10. [10]

      10. Tang, X. L.; Hao, J. M.; Xu, W. G.; Li, J. H. Catal. Commun., 2007, 8: 329

    11. [11]

      11. Donovan, A. P.; Balu, S. U.; Panagiotis, G. S. J. Catal., 2004, 221: 421

    12. [12]

      12. Li, J. H.; Chen, J.; Ke, R.; Luo, C. K.; Hao, J. M. Catal. Commun., 2007, 8: 1896

    13. [13]

      13. Qi, G. S.; Yang, R. T.; Chang, R. Appl. Catal. B-Environ., 2004, 51: 93

    14. [14]

      14. Qi, G. S.; Yang, R. T. J. Phys. Chem. B, 2004, 108: 15738

    15. [15]

      15. Forzatti, P. Appl. Catal. A-Gen., 2001, 222: 221

    16. [16]

      16. Apostolescu, N.; Geiger, B.; Hizbullah, K.; Jan, M. T.; Kureti, S.; Reichert, D.; Schott, F.; Weisweiler, W. Appl. Catal. B-Environ., 2006, 62: 104

    17. [17]

      17. Reddy, B. M.; Khan, A. Catal. Rev., 2005, 47(2) : 257

    18. [18]

      18. Li, W.; Lin, T.; Zhang, Q. L.; ng, M. C.; Chen, Y. Q. Chin. J. Catal., 2009, 30(2):104 [李伟,林涛, 张秋林, 龚茂初, 陈耀强.催化学报, 2009, 30(2): 104]

    19. [19]

      19. Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. Chem. Mater., 2000, 12: 3158

    20. [20]

      20. Huang, H. Y.; Yang, R. T. Langmuir, 2001, 17: 4997

    21. [21]

      21. Pena, D. A.; Uphade, B. S.; Smirniotis, P. G. J. Catal., 2004, 221: 421

    22. [22]

      22. Due-Hansen, J.; Kustov, A. L.; Rasmussen, S. B.; Fehrmann, R.; Christensen, C. H. Appl. Catal. B-Environ., 2006, 66: 161

    23. [23]

      23. Tang, X. L. The technology and reaction mechanismof low temperature selective catalytic reduction of NOx. Beijing: Metallurgical Industry Press, 2007: 109 [唐晓龙.低温选择性催 化还原NOx技术及反应机理.北京:冶金工业出版社, 2007: 109]

    24. [24]

      24. Juan, P. H.; Rafael, A.; Guillermo, M. Appl. Surf. Sci., 2000, 161 (3-4): 301

    25. [25]

      25. Falcal, L.; Jerome, P.; Alain, A. Appl. Surf. Sci., 2002, 195: 236

    26. [26]

      26. Kijlstra, W. S.; Brand, D. S.; Smit, H. I.; Poels, E. K.; Blief, A. J. Catal., 1997, 171: 208

    27. [27]

      27. Kijlstra, W. S.; Brand, D. S.; Smit, H. I.; Poels, E. K.; Blief, A. J. Catal., 1997, 171: 219

    28. [28]

      28. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Mullenberg, G. E. Handbook of X-ray photoelectron spectroscopy. Eden Prairie: Perking Elmer Corp., 1979

    29. [29]

      29. Busca, G.; Larrubia, M. A.; Arrighi, L.; Ramis, G. Catal. Today, 2005, 107-108: 139

    30. [30]

      30. Alemany, L. J.; Lietti, L.; Ferlazzo, N.; Forzatti, P.; Busca, G.; Giamello, E.; Bregani, F. J. Catal., 1995, 155: 117

    31. [31]

      31. Lietti, L.; Alemany, J. L.; Forzatti, P. Catal. Today, 1996, 29: 143

    32. [32]

      32. Lietti, L. Appl. Catal. B-Environ., 1996, 10(4): 281

    33. [33]

      33. Ramis, G.; Cristiani, C.; Elmi, M. S.; Villa, P. L.; Busca, G. J. Mol. Catal., 1990, 61: 319

    34. [34]

      34. Kobayashi, M.; Miyoshi, K. Appl. Catal. B-Environ., 2007, 72: 253


  • 加载中
    1. [1]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    2. [2]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    6. [6]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    15. [15]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

Metrics
  • PDF Downloads(1322)
  • Abstract views(3255)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return