Citation: HUANG Yong-Xia, LAI Yue-Kun, SUN Lan, LIN Chang-Jian. Electrochemical Construction and Biological Performance of Micropatterned CaP Films[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2057-2060. doi: 10.3866/PKU.WHXB20100837 shu

Electrochemical Construction and Biological Performance of Micropatterned CaP Films

  • Corresponding author: LIN Chang-Jian, cjlin@xmu.edu.cn
  • Received Date: 29 March 2010
    Available Online: 30 June 2010

    Fund Project: 国家自然科学基金-重大国际合作研究项目(20620130427) (20620130427)国家自然科学基金项目(20773100) (20773100) 国家重点基础研究发展规划项目(973) (2007CB935603) (973) (2007CB935603)国家科技部国际合作重大项目(2007DFC40440)资助 (2007DFC40440)

  • Based on surface molecule self-assembly and photocatalytic lithography techniques, superhydrophilic/superhydrophobic micropatterns were fabricated on TiO2 films. Micropatterned calcium phosphate (CaP) films were successfully fabricated by the as-prepared superhydrophilic/superhydrophobic template combined with the electrochemical deposition method. Scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) indicated that micropatterned CaP films with a high spatial resolution could be constructed using the superhydrophilic/superhydrophobic micropatterns as templates. In vitro MG-63 cell tests of the micropatterned CaP films showed that the cells selectively adhered to the tiny CaP film units, which is promising for the control of the adherent growth of the cells on the tiny units and to achieve a high throughput evaluation of the cell behavior.

  • 加载中
    1. [1]

      [1]. Discher, D. E.; Janmey, P.; Wang, Y. L. Science, 2005, 310: 1139

    2. [2]

      [2]. Whitesides, G. M.; Ostuni, E.; Takayama, S. Annu. Rev. Biomed. Eng., 2001, 3: 335

    3. [3]

      [3]. Wan, Y. Q.; Wang, Y.; Liu, Z. M. Biomaterials, 2005, 26: 4453

    4. [4]

      [4]. Li, Y.; Yuan, B.; Ji, H. Angew. Chem. Int. Edit., 2007, 46: 1094

    5. [5]

      [5]. Sun, J. G.; Graeter, S. V.; Yu, L. Biomacromolecules, 2008, 9: 2569

    6. [6]

      [6]. Harrison, R. G. Anat. Rec., 1912, 6: 181

    7. [7]

      [7]. Dusseiller, M. R.; Schlaepfer, D.; Koch, M. Biomaterials, 2005, 26: 5917

    8. [8]

      [8]. Lussi, J. W.; Michel, R.; Reviakine, I. Prog. Surf. Sci., 2004, 76: 55

    9. [9]

      [9]. Schindler, M.; Ahmed, I.; Kamal, J. Biomaterials, 2005, 26: 5624

    10. [10]

      [10]. Hahn, M. S.; Miller, J. S.; West, J. L. Adv. Mater., 2006, 18: 2679

    11. [11]

      [11]. Miller, J. S.; Béthencourt, M. I.; Hahn, M. Biotechnol. Bioeng., 2006, 93: 1060

    12. [12]

      [12]. Lee, S. H.; Moon, J. J.; West, J. L. Biomaterials, 2008, 29: 2962

    13. [13]

      [13]. Teixeira, A. I.; Nealey, P. F.; Murphy, C. J. J. Biomed. Mater. Res. A, 2004, 71A: 369

    14. [14]

      [14]. Charest, J. L.; Eliason, M. T.; Garcia, A. J. Biomaterials, 2006, 27: 2487

    15. [15]

      [15]. Revzin, A.; Tompkins, R. G.; Toner, M. Langmuir, 2003, 19: 9855

    16. [16]

      [16]. Hui, E. E.; Bhatia, S. N. Langmuir, 2007, 23: 4103

    17. [17]

      [17]. Tadanaga, K.; Morinaga, J.; Matsuda, A.; Minam, T. Chem. Mater., 2000, 12: 590

    18. [18]

      [18]. Zhang, X. T.; Sato, O.; Fujishima, A. Langmuir, 2004, 20: 6065

    19. [19]

      [19]. Lai, Y. K.; Lin, C. J.; Wang, H.; Huang, J. Y.; Zhuang, H. F.; Sun, L. Electrochem. Commun., 2008, 10: 387

    20. [20]

      [20]. Lai, Y. K.; Huang, J. Y.; ng, J. J.; Huang, Y. X.; Wang, C. L.; Chen, Z.; Lin, C. J. J. Electrochem. Soc., 2009, 156(11): D480

    21. [21]

      [21]. Lai, Y. K.; Lin, Z. Q.; Huang, J. Y.; Sun, L.; Chen, Z.; Lin, C. J. New J. Chem., 2010, 34(1): 44

    22. [22]

      [22]. Lai, Y. K.; Huang, Y. X.; Wang, H.; Huang, J. Y.; Chen, Z.; Lin, C. J. Colloids Surf. B, 2010, 76: 117

    23. [23]

      [23]. Lai, Y. K.; Sun, L.; Zuo, J.; Lin, C. J. Acta Phys. -Chim. Sin., 2004, 20:1063. [赖跃坤, 孙 岚, 左 娟, 林昌健. 物理化学学报, 2004, 20: 1063

    24. [24]

      [24]. Wang, H.; Lin, C. J.; Zhao, D. M.; Hu, R.; Zhang, F.; Lin, L. W. J. Biomed. Mater. Res. Part A, 2008, 87: 698


  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    10. [10]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    11. [11]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    12. [12]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    13. [13]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    14. [14]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(1313)
  • Abstract views(2658)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return