Citation: HUANG Yong-Xia, LAI Yue-Kun, SUN Lan, LIN Chang-Jian. Electrochemical Construction and Biological Performance of Micropatterned CaP Films[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2057-2060. doi: 10.3866/PKU.WHXB20100837 shu

Electrochemical Construction and Biological Performance of Micropatterned CaP Films

  • Corresponding author: LIN Chang-Jian, cjlin@xmu.edu.cn
  • Received Date: 29 March 2010
    Available Online: 30 June 2010

    Fund Project: 国家自然科学基金-重大国际合作研究项目(20620130427) (20620130427)国家自然科学基金项目(20773100) (20773100) 国家重点基础研究发展规划项目(973) (2007CB935603) (973) (2007CB935603)国家科技部国际合作重大项目(2007DFC40440)资助 (2007DFC40440)

  • Based on surface molecule self-assembly and photocatalytic lithography techniques, superhydrophilic/superhydrophobic micropatterns were fabricated on TiO2 films. Micropatterned calcium phosphate (CaP) films were successfully fabricated by the as-prepared superhydrophilic/superhydrophobic template combined with the electrochemical deposition method. Scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) indicated that micropatterned CaP films with a high spatial resolution could be constructed using the superhydrophilic/superhydrophobic micropatterns as templates. In vitro MG-63 cell tests of the micropatterned CaP films showed that the cells selectively adhered to the tiny CaP film units, which is promising for the control of the adherent growth of the cells on the tiny units and to achieve a high throughput evaluation of the cell behavior.

  • 加载中
    1. [1]

      [1]. Discher, D. E.; Janmey, P.; Wang, Y. L. Science, 2005, 310: 1139

    2. [2]

      [2]. Whitesides, G. M.; Ostuni, E.; Takayama, S. Annu. Rev. Biomed. Eng., 2001, 3: 335

    3. [3]

      [3]. Wan, Y. Q.; Wang, Y.; Liu, Z. M. Biomaterials, 2005, 26: 4453

    4. [4]

      [4]. Li, Y.; Yuan, B.; Ji, H. Angew. Chem. Int. Edit., 2007, 46: 1094

    5. [5]

      [5]. Sun, J. G.; Graeter, S. V.; Yu, L. Biomacromolecules, 2008, 9: 2569

    6. [6]

      [6]. Harrison, R. G. Anat. Rec., 1912, 6: 181

    7. [7]

      [7]. Dusseiller, M. R.; Schlaepfer, D.; Koch, M. Biomaterials, 2005, 26: 5917

    8. [8]

      [8]. Lussi, J. W.; Michel, R.; Reviakine, I. Prog. Surf. Sci., 2004, 76: 55

    9. [9]

      [9]. Schindler, M.; Ahmed, I.; Kamal, J. Biomaterials, 2005, 26: 5624

    10. [10]

      [10]. Hahn, M. S.; Miller, J. S.; West, J. L. Adv. Mater., 2006, 18: 2679

    11. [11]

      [11]. Miller, J. S.; Béthencourt, M. I.; Hahn, M. Biotechnol. Bioeng., 2006, 93: 1060

    12. [12]

      [12]. Lee, S. H.; Moon, J. J.; West, J. L. Biomaterials, 2008, 29: 2962

    13. [13]

      [13]. Teixeira, A. I.; Nealey, P. F.; Murphy, C. J. J. Biomed. Mater. Res. A, 2004, 71A: 369

    14. [14]

      [14]. Charest, J. L.; Eliason, M. T.; Garcia, A. J. Biomaterials, 2006, 27: 2487

    15. [15]

      [15]. Revzin, A.; Tompkins, R. G.; Toner, M. Langmuir, 2003, 19: 9855

    16. [16]

      [16]. Hui, E. E.; Bhatia, S. N. Langmuir, 2007, 23: 4103

    17. [17]

      [17]. Tadanaga, K.; Morinaga, J.; Matsuda, A.; Minam, T. Chem. Mater., 2000, 12: 590

    18. [18]

      [18]. Zhang, X. T.; Sato, O.; Fujishima, A. Langmuir, 2004, 20: 6065

    19. [19]

      [19]. Lai, Y. K.; Lin, C. J.; Wang, H.; Huang, J. Y.; Zhuang, H. F.; Sun, L. Electrochem. Commun., 2008, 10: 387

    20. [20]

      [20]. Lai, Y. K.; Huang, J. Y.; ng, J. J.; Huang, Y. X.; Wang, C. L.; Chen, Z.; Lin, C. J. J. Electrochem. Soc., 2009, 156(11): D480

    21. [21]

      [21]. Lai, Y. K.; Lin, Z. Q.; Huang, J. Y.; Sun, L.; Chen, Z.; Lin, C. J. New J. Chem., 2010, 34(1): 44

    22. [22]

      [22]. Lai, Y. K.; Huang, Y. X.; Wang, H.; Huang, J. Y.; Chen, Z.; Lin, C. J. Colloids Surf. B, 2010, 76: 117

    23. [23]

      [23]. Lai, Y. K.; Sun, L.; Zuo, J.; Lin, C. J. Acta Phys. -Chim. Sin., 2004, 20:1063. [赖跃坤, 孙 岚, 左 娟, 林昌健. 物理化学学报, 2004, 20: 1063

    24. [24]

      [24]. Wang, H.; Lin, C. J.; Zhao, D. M.; Hu, R.; Zhang, F.; Lin, L. W. J. Biomed. Mater. Res. Part A, 2008, 87: 698


  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    10. [10]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    11. [11]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    12. [12]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(1313)
  • Abstract views(2613)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return