Citation: XU Fen, QIU Shu-Jun, LIANG Jian-Guo, WU Rui-Hua, SUN Li-Xian, LI Fen. Low Temperature Heat Capacity and Thermal Analysis of Caffeine, Theophylline and Aminophylline[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2096-2102. doi: 10.3866/PKU.WHXB20100836 shu

Low Temperature Heat Capacity and Thermal Analysis of Caffeine, Theophylline and Aminophylline

  • Received Date: 26 March 2010
    Available Online: 30 June 2010

    Fund Project: 国家重点基础研究发展规划项目(973) (2010CB631303) (973) (2010CB631303)

  • Caffeine, theophylline, and aminophylline are important methyl-substituted xanthines and are widely used in clinics. In this work, the thermodynamic characteristics of the three drugs were studied by adiabatic calorimetry, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The low temperature molar heat capacities of caffeine (in the β crystal form), theophylline and aminophylline were measured by heating the system from 80 to 370 K using an adiabatic calorimeter. The results indicate that the molar heat capacity of aminophylline is the largest while that of theophylline is the smallest. The experimental molar heat capacities of the three drugs were fitted to a polynomial of Cp, m vs the reduced temperature (t) by means of the least fitting square method from 80 to 370 K. Their molar heat capacities at 298.15 K were calculated to be 226.49 J·K-1·mol-1 (for caffeine), 218.13 J·K-1·mol-1 (for theophylline), and 554.78 J·K-1·mol-1 (for aminophylline) using the polynomial Cp, m-t. Thermodynamic parameters (such as enthalpies and entropies relative to 298.15 K) were calculated for these drugs based on the polynomial Cp, m-t. The results of thermal analysis show that the order of thermal stability for these drugs is aminophylline<caffeine<theophylline. The temperatures, enthalpies and entropies of the phase transitions for caffeine and theophylline were obtained by DSC. The stabilities of the molecular structures for caffeine and theophylline were calculated by a first-principles calculation based on density functional theory. The results imply that the stability of the caffeine molecule is lower than that of theophylline and this is in od agreement with the experimental results.

  • 加载中
    1. [1]

      [1]. Kassim, Z.; Greenough, A.; Rafferty, G. F. Eur. J. Pediatr., 2009, 168: 1491

    2. [2]

      [2]. Skouroliakou, M.; Bacopoulou, F.; Markantonis, S. L. J. Paediatr. Child Health, 2009, 45: 587

    3. [3]

      [3]. Zhu, M.; Sun, Y.; Guo, D. H.; Shi, L. China Pharmacy, 2007, 18:1838. [朱 曼, 孙 艳, 郭代红, 石 莉. 中国药房, 2007, 18: 1838]

    4. [4]

      [4]. Farber, H. J. Curr. Opin. Pulm. Med., 2010, 16: 25

    5. [5]

      [5]. Raj, N. S.; Guleria, R.; Misra, A. J. Clin. Pharmacol., 2006, 46: 1070

    6. [6]

      [6]. Zhang, H.; Zhao, A. H.; Chen, N. J. Pharmaceutical and Clinical Research, 2009, 17:160. [张 辉, 赵爱华, 陈乃江. 药学与临床研究, 2009, 17: 160]

    7. [7]

      [7]. Li, Q.; Zhang, T. T.; Lv, W. Y. Eur. J. Med. Chem., 2009, 44: 1452

    8. [8]

      [8]. Mazurek, S.; Szostak, R. J. Pharm. Biomed. Anal., 2006, 40: 1235

    9. [9]

      [9]. He, X. J.; Liu, X. H.; Jia, S. S. Drug Standards of China, 2006, 7:38. [赫修洁, 刘晓华, 贾首时. 中国药品标准, 2006, 7: 38]

    10. [10]

      [10]. Kunadharaju, S.; Savva, M. J. Chem. Eng. Data, 2010, 55: 103

    11. [11]

      [11]. Zhang, J.; Chen, D. H.; Yuan, Y. H.; Yang, T. M.; Qu, H. A. Acta Pharmaceutica Sinica, 2000, 35:44. [张 健, 陈栋华, 袁誉洪, 杨天鸣, 瞿鸿岸. 药学学报, 2000, 35: 44]

    12. [12]

      [12]. Neto, H. S.; Novak, C.; Matos, J. R. J. Therm. Anal. Cal., 2009, 97: 367

    13. [13]

      [13]. Dang, Z.; Song, L. X.; Pan, S. Z.; Wang, M. Acta Phys. -Chim. Sin., 2009, 25:1059. [党 政, 宋乐新, 潘淑臻, 王 莽. 物理化学学报, 2009, 25: 1059]

    14. [14]

      [14]. Cesàro, A.; Starec, G. J. Phys. Chem., 1980, 84: 1345

    15. [15]

      [15]. Bothe, H.; Cammenga, H. K. J. Therm. Anal., 1979, 16: 267

    16. [16]

      [16]. Bruns, S.; Reichelt, J.; Cammenga, H. K. Thermochim. Acta, 1984, 72: 31

    17. [17]

      [17]. Dong, J. X.; Li, Q.; Tan, Z. C.; Zhang, Z. H.; Liu, Y. J. Chem. Thermodyn., 2007, 39: 108

    18. [18]

      [18]. Yoshihashi, Y.; Makita, M.; Yamamura, S.; Fukuoka, E.; Terada, K. Chem. Pharm. Bull., 1998, 46: 1148

    19. [19]

      [19]. Sarma, P. D.; Nandita, G. D.; Terrance, P. K.; Theodore, D. S. Int. J. Pharm., 1995, 114: 247

    20. [20]

      [20]. Druzhinina, A. I.; Varushchenko, R. M.; Troyanov, S. I.; Sidorov, L. N. J. Chem. Thermodyn., 2010, 42: 165

    21. [21]

      [21]. Liu, P.; Xiong, W.; Hu, S. Z.; Li, X.; Tan, Z. C. Acta Phys. -Chim. Sin., 2009, 25:2417. [刘 鹏, 熊 伟, 胡善洲, 李 曦, 谭志诚. 物理化学学报, 2009, 25: 2417]

    22. [22]

      [22]. Paukov, I. E.; Kovalevskaya, Y. A.; Boldyreva, E. V.; Drebushchak, V. A. J. Therm. Anal. Cal., 2009, 98: 873

    23. [23]

      [23]. Xu, F.; Sun, L. X.; Tan, Z. C.; Liang, J. G.; Zhang, T. J. Therm. Anal. Cal., 2006, 83: 187

    24. [24]

      [24]. Chirico, R. D.; Steele, W. V. J. Chem. Thermodyn., 2009, 41: 392

    25. [25]

      [25]. Uchida, A.; Moriya, Y.; Kawaji, H.; Atake, T.; Fukuhara, M.; Kimura, H.; Inoue, A. J. Chem. Eng. Data, 2009, 54: 2033

    26. [26]

      [26]. Archer, D. G. J. Phys. Chem. Ref. Data, 1993, 22: 1441

    27. [27]

      [27]. (a) Hohenberg, P.; Kohn, W. Phys. Rev. B, 1964, 136: 864 (b) Kohn, W.; Sham, L. J. Phys. Rev. A, 1965, 140: 1133

    28. [28]

      [28]. Delley, B. J. Chem. Phys., 2000, 113: 7756

    29. [29]

      [29]. Perdew, J. P.; Wang, Y. Phys. Rev. B, 1992, 45: 13244


  • 加载中
    1. [1]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    2. [2]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    9. [9]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    10. [10]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    11. [11]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    12. [12]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    13. [13]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    14. [14]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    15. [15]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    16. [16]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    17. [17]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    19. [19]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    20. [20]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

Metrics
  • PDF Downloads(1514)
  • Abstract views(3667)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return