Citation: YAN Liang-Liang, JIANG Qing-Ning, LIU De-Yu, ZHONG Yan, WEN Fei-Peng, DENG Xiao-Cong, ZHONG Qi-Ling, REN Bin, TIAN Zhong-Qun. Electrocatalytic Oxidation of Formic Acid on Pt-Se HollowNanosphere Modified Glassy Carbon Electrodes[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2337-2342. doi: 10.3866/PKU.WHXB20100835 shu

Electrocatalytic Oxidation of Formic Acid on Pt-Se HollowNanosphere Modified Glassy Carbon Electrodes

  • Received Date: 11 March 2010
    Available Online: 30 June 2010

    Fund Project: 国家自然科学基金(20663002) (20663002)厦门大学固体表面物理化学国家重点实验室基金(200511)资助项目 (200511)

  • Platinum-selenium and platinum hollow nanospheres (denoted as (Pt-Se)HN and PtHN, respectively) with different coverages of Se (θSe) (θSe=0.49, 0.39, 0.06, 0) were prepared using amorphous Se colloids as a sacrificial template. Sulfite was used to completely remove Se from the core-shell nanoparticles. The morphology and structure of the nanoparticles were characterized using various methods, which revealed a hollow structure with a very uniform size distribution and a porous structure on the shell. Assembly of Pt-Se hollownanospheres ((Pt-Se)HN) on a glassy carbon (GC) electrode produced a (Pt-Se)HN/GC electrode. The electrocatalytic activity of the electrode for the oxidation of formic acid was compared with the PtHN/GCand commercial Pt/C/GCelectrodes by cyclic voltammetry and chronoamperometry. The activity followed the order: (Pt-Se)HN/GC > PtHN/GC >Pt/C/GC. The electrooxidation of formic acid on (Pt-Se)HN/C, PtHN/C, and Pt/C catalysts follows different mechanisms: the former tends to directly oxidize formic acid to CO2 via weakly adsorbed intermediates, and the latter two via both weakly and strongly adsorbed intermediates. (Pt-Se)HN with a suitable seleniumcontent showed optimal electrocatalytic activity for the oxidation of formic acid.

  • 加载中
    1. [1]

      1. Mao, Z. Q. Fuel cell. Beijing: Chemical Industry Press, 2005: 1-31[毛宗强.燃料电池. 北京:化学工业出版社, 2005: 1-31]

    2. [2]

      2. Yi, B. L. Fuel cell: foundmental, technology, application. Beijing:Chemical Industry Press, 2003: 1-7 [衣宝廉. 燃料电池:原理·技术·应用. 北京:化学工业出版社, 2003: 1-7]

    3. [3]

      3. Lu, T. H. High-Technology and Industrialization, 2008, 11: 70[陆天虹.高技术与工业, 2008, 11: 70]

    4. [4]

      4. Hong, P.; Liao, S. J. Modern Chemical Industry, 2009, 8: 15[洪平, 廖世军.现代化工, 2009, 8: 15]

    5. [5]

      5. Ha, S.; Dunbar, Z.; Masel, R. I. J. Power Sources, 2006, 158: 129

    6. [6]

      6. Yang, G. X.; Chen, T. T.; Tang, Y.W.; Lu, T. H. Acta Phys. -Chim.Sin., 2009, 25(12): 2450 [杨改秀,陈婷婷,唐亚文,陆天虹.物理化学学报, 2009, 25(12): 2450]

    7. [7]

      7. Yu, X. W.; Pickup, P. G. J. Power Sources, 2008, 182: 124

    8. [8]

      8. Zhang, S. S.; Yuan, X. Z.; Hin, J. N. C.; Wang, H. J.; Friedrich, K.A.; Schulze, M. J. Power Sources, 2009, 194: 588

    9. [9]

      9. Motoo, S. Proceedings of the Symposium chemistry and physics ofelectrocatalysis. McIntyre, J. D. E.;Weaver, M. J.; Yeager, E. B. Eds.San Francisco, 1983, Princeton, NJ: The Electrochemical Society,1984: 331

    10. [10]

      10. Rice, C.; Ha, S.; Masel, R. I.;Waszczuk, P.; Wieckowski, A.;Barnard, T. J. Power Sources, 2002, 111: 83

    11. [11]

      11. Rice, C.; Ha, S.; Masel, R. I.;Wieckowski, A. J. Power Sources,2003, 115: 229

    12. [12]

      12. Uhm, S.; Lee, H. J.; Kwon, Y.; Lee, J. Angew. Chem. Int. Edit.,2008, 47: 10163

    13. [13]

      13. Angerstein-Kozlowska, H.; MacDougall, B.; Conway, B. E.J. Electrochem. Soc., 1973, 120: 756

    14. [14]

      14. Adzic, R. R.; Simic, D. N.; Despic, A. R.; Drazic, D. M.J. Electroanal. Chem., 1975, 65: 587

    15. [15]

      15. Zhang, H. X.; Chao, W.; Wang, J. Y.; Zhai, J. J.; Cai, W. B.J. Phys. Chem. C, 2010, 114: 6446

    16. [16]

      16. Llorca, M. J.; Herrero, E.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem., 1994, 373: 217

    17. [17]

      17. Shibata, M.; Motoo, S. J. Electroanal. Chem., 1987, 229: 385

    18. [18]

      18. Shibata, M.; Takahashi, O.; Motoo, S. J. Electroanal. Chem., 1988,249: 253

    19. [19]

      19. Xia, X. H.; Iwasita, T. J. Electrochem. Soc., 1993, 140: 2559

    20. [20]

      20. Chizhikov, D. M.; Shchastlivyi, V. P. Seleniumand selenides(translated fromthe Russion by Elkin, E. M.). London andWellingborough: Collet忆s LTD, 1968: 40

    21. [21]

      21. Wang, R. F.; Liao, S. J.; Liu, H. Y.; Meng, H. J. Power Sources,2007, 171: 471

    22. [22]

      22. Trasatti, S.; Petrii, O. A. Pure Appl. Chem., 1991, 63: 711

    23. [23]

      23. Wu, Y. N.; Liao, S. J. Acta Phys. -Chim. Sin., 2010, 26(3): 669[吴燕妮,廖世军.物理化学学报, 2010, 26(3): 669]

    24. [24]

      24. Leiva, E.; Iwasita, T.; Herrero, E.; Feliu, J. M. Langmuir, 1997,13: 6287

    25. [25]

      25. Samjeské, G.; Osawa, M. Angew. Chem. Int. Edit., 2005, 44: 5694

    26. [26]

      26. Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung, Y. E. J. Phys.Chem. C, 2007, 111: 19126

    27. [27]

      27. Park, S.; Xie, Y.; Weaver, M. J. Langmuir, 2002, 18: 5792

    28. [28]

      28. Kristian, N.; Yan, Y.; Wang, X. Chem. Commun., 2008: 353


  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(1392)
  • Abstract views(4804)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return