Citation: GUO Pei-Zhi, HAN Guang-Ting, WANG Bao-Yan, ZHAO Xiu-Song. Biomolecule-Assisted Hydrothermal Synthesis and Optical Properties of Cu7S4 Nanotubes[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2557-2562. doi: 10.3866/PKU.WHXB20100834 shu

Biomolecule-Assisted Hydrothermal Synthesis and Optical Properties of Cu7S4 Nanotubes

  • Received Date: 3 February 2010
    Available Online: 30 June 2010

    Fund Project: 国家自然科学基金(20803037) (20803037) 山东省博士基金(2007BS04022) (2007BS04022)山东省自然科学基金(ZR2009BM013) (ZR2009BM013)

  • Cu7S4 nanotubes were synthesized using a biomolecule DL-methionine-assisted hydrothermal method. The morphology and phase of the products can be controlled by adjusting the reaction parameters such as synthesis temperature, reaction time and the molar ratio of the reagents. We found that uniform polycrystal Cu7S4 nanotubes with diameters of 100-600 nm and lengths of 40-100 μm can be controllably synthesized at 200oC when the molar ratio of Cu(NO3)2 to DL-methionine in the synthesis system is 1:2. Similar Cu7S4 nanotubes can be obtained from D-or L- methionine systems. The bandgap energy of the Cu7S4 nanotubes was measured to be about 2.88 eV, a remarkable blue shift in comparison with that of bulk Cu7S4 (2.0 eV). We discussed the relationship between the products and the functional groups in the amphiphilic biomolecules. On the basis of our experimental data, we proposed that the Cu7S4 nanotubes were formed versus a self-sacrificing template mechanism.

  • 加载中
    1. [1]

      1. Iijima, S. Nature, 1991, 354: 56

    2. [2]

      2. ldberger, J.; He, R.; Zhang, Y.; Lee, S. W.; Yan, H.; Choi, H. J.; Yang, P. D. Nature, 2003, 422: 599

    3. [3]

      3. Ebbesen, T. W.; Ajayan, P. M. Nature, 1992, 358: 220

    4. [4]

      4. Yuan, Z. H.; Huang, H.; Liu, L.; Fan, S. S. Chem. Phys. Lett., 2001, 345: 39

    5. [5]

      5. Hacohen, Y. R.; Grunbaum, E.; Tenne, R.; Sloan, J.; Hutchison, J. L. Nature, 1998, 395: 336

    6. [6]

      6. Wu, C. Y.; Yu, S. H.; Chen, S. F.; Liu, G. N.; Liu, B. H. J. Mater. Chem., 2006, 16: 3326

    7. [7]

      7. Yoshimura, M.; Somiya, S. Mater. Chem. Phys., 1991, 61: 1

    8. [8]

      8. Xu, A.W.; Fang, Y. P.; You, L. P.; Liu, H. Q. J. Am. Chem. Soc., 2003, 125: 1494

    9. [9]

      9. Yamamoto, T.; Kubota, E.; Taniguchi, A.; Dev, S.; Tanaka, K.; Osakada, K. Chem. Mater., 1992, 4: 570

    10. [10]

      10. Behboudnia, M.; Khanbabaee, B. J. Cryst. Growth, 2007, 304: 158

    11. [11]

      11. Guo, P. Z.; Li, H. L.; Yu, J. Q.; Sun, H.; Zhao, X. S. Chin. J. Inorg. Chem., 2008, 24: 1387 [郭培志,李洪亮, 于建强,孙红,赵修 松. 无机化学学报, 2008, 24: 1387]

    12. [12]

      12. Zhang, W. X.; Xu, J.; Yang, Z. H.; Ding, S. X. Chem. Phys. Lett., 2007, 434: 256

    13. [13]

      13. Li, B. X.; Xie, Y.; Xue, Y. J. Phys. Chem. C, 2007, 111: 12181

    14. [14]

      14. Sigman Jr., M. B.; Korgel, B. A. Chem. Mater., 2005, 17: 1655

    15. [15]

      15. Zhao, N. N.; Qi, L. M. Adv. Mater., 2006, 18: 359

    16. [16]

      16. Cao, H. L.; Qian, X. F.; Wang, C.; Ma, X. D.; Yin, J.; Zhu, Z. K. J. Am. Chem. Soc., 2005, 127: 16024

    17. [17]

      17. An, C. H.; Wang, S. T.; He, J.; Wang, Z. X. J. Cryst. Growth, 2008, 310: 266

    18. [18]

      18. Tan, C. H.; Zhu, Y. L.; Lu, R.; Xue, P. C.; Bao, C. Y.; Liu, X. L.; Fei, Z. P.; Zhao, Y. Y. Mater. Chem. Phys., 2005, 91: 44

    19. [19]

      19. Zhang, Y. C.; Qiao, T.; Hu, X. Y.; Zhou, W. D. Mater. Res. Bull., 2005, 40: 1696

    20. [20]

      20. Lu, Q. Y.; Gao, F.; Zhao, D. Y. Nano Lett., 2002, 2: 725

    21. [21]

      21. Tong, H.; Zhu, Y. J.; Yang, L. X.; Li, L.; Zhang, L. Angew. Chem. Int. Edit., 2006, 45: 7739

    22. [22]

      22. Lu, Q. Y.; Gao, F.; Komareni, S. J. Am. Chem. Soc., 2004, 126: 54

    23. [23]

      23. Liu, S. Z.; Xiong, S. L.; Bao, K. Y.; Cao, J.; Qian, Y. T. J. Phys. Chem. C, 2009, 113: 13002

    24. [24]

      24. Znhn, S.; Canary, J. W. Science, 2000, 288: 1404

    25. [25]

      25. Silverstein, R. M.; Webster, F. X; Kiemle, D. J. Spectrometric identification of organic compounds. 7th ed. Pennsylvanian: Lehigh Press, 2005: 82-108

    26. [26]

      26. Guo, P. Z.; Liu, M. H.; Nakahara, H.; Ushida, K. ChemPhysChem, 2006, 7: 385

    27. [27]

      27. Zhang, W.; Lu, C.; Zou, Y.; Xie, J.; Ren, X.; Zhu, H.; Meng, Q. J. Colloid Interface Sci., 2002, 249: 301

    28. [28]

      28. Bebin, P.; Prud忆homme, R. E. Chem. Mater., 2003, 15: 965

    29. [29]

      29. Chen, H. Y.; Chen, L.; Lin, J.; Tan, K. L.; Li, J. Inorg. Chem., 1997, 36: 1417

    30. [30]

      30. Zhang, Y.; Qiao, Z. P.; Chen. X. M. J. Solid State Chem., 2002, 167: 249

    31. [31]

      31. Zhang, F.; Wong, S. S. Chem. Mater., 2009, 21: 4541

    32. [32]

      32. Roy, P.; Mondal, K.; Srivastava, S. K. Cryst. Growth Des., 2008, 8: 1530

    33. [33]

      33. Yamagishi, A. J. Phys. Chem., 1981, 85: 2665

    34. [34]

      34. Adams, A.; Bucknall, R. M.; Fenton, D. E.; Garcia, M.; Oakes, J. Polyhedron, 1998, 17: 4169

    35. [35]

      35. Burford, A.; Eleman, M. D.; Mahony, D. E.; Morash, M. Chem. Commun., 2003: 146

    36. [36]

      36. Klokkenburg, M.; Vonk, C.; Claesson, E. M.; Meeldijk, J. D.; Erne, B. H.; Philipse, A. P. J. Am. Chem. Soc., 2004, 126: 16706

    37. [37]

      37. Butter, K.; Bomans, P. H. H.; Frederik, P. M.; Vroege, G. J.; Philipse, A. P. Nat. Mater., 2003, 2: 88

    38. [38]

      38. Konishi, Y.; Nomura, T.; Satoh, D. Ind. Eng. Chem. Res., 2004, 43: 2088


  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    11. [11]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    12. [12]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    13. [13]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    14. [14]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    15. [15]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    16. [16]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    17. [17]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(1273)
  • Abstract views(2749)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return