Citation: LIU Xiong-Min, QIN Rong-Xiu, HUANG Pin-Xian, LIU Jia-Ling, MA Li, LI Wei-Guang. Oxidation Reaction Kinetics of Abietic Acid and Rosin under Ultraviolet Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2115-2120. doi: 10.3866/PKU.WHXB20100832 shu

Oxidation Reaction Kinetics of Abietic Acid and Rosin under Ultraviolet Light Irradiation

  • Received Date: 8 April 2010
    Available Online: 29 June 2010

    Fund Project: 国家科技支撑计划课题(2007BAD82B01) (2007BAD82B01)广西科学基金项目(0639001, 0832002)资助 (0639001, 0832002)

  • We designed an oxidation reactor for abietic acid and rosin oxidation under ultraviolet light irradiation. The oxidation process of abietic acid and rosin were determined by UV spectrophotometry and the rate constants (kb) and activation energy (Ea) of the oxidation process were calculated. The kinetic effect of the quantum efficiency (Φ) and the light intensity (I) on the photooxidation reaction were also investigated. The experimental results showed that the photooxidation kinetics of abietic acid and rosin were pseudo first order. The relationship between the natural logarithm of rate constant (lnkb) and the natural logarithm of the light intensity (lnI) is linear. When the reaction temperatures were 20, 25, and 35 ℃, the apparent reaction rate constants of abietic acid were: lnkb=0.9911lnI-8.860, lnkb=0.8786lnI-8.069, and lnkb=0.8364lnI-7.690, respectively. At 20 ℃, the apparent reaction rate constant of rosin was lnkb=1.204lnI-10.49. The initial quantum efficiency of abietic acid is 0.471 and the relationship between the activation energy (Ea) of abietic acid and the natural logarithm of the light intensity (lnI) is also linear: Ea=-7.549lnI+60.02.

  • 加载中
    1. [1]

      [1] Song, Z. Q. Chemistry and Industry of Forest Products, 2004, 24 (supplement): 7 [宋湛谦. 林产化学与工业, 2004, 24(增刊): 7]

    2. [2]

      [2] Zhang, Z. G.; Huang, J. M.; Kang, D. H. Journal of Nanchang University (Natural Science), 2000, 24(3): 274 [张招贵, 黄精美, 康冬华. 南昌大学学报: 理科版, 2000, 24(3): 274]

    3. [3]

      [3] Chen, X. H. Chemical World, 2005, (6): 344 [陈学恒. 化学世界, 2005, (6): 344]

    4. [4]

      [4] Song, Z. Q.; Wang, Z. H.; Tang, Y. D. Fine and Specialty Chemicals, 2000, 9(18): 21 [宋湛谦, 王振洪, 唐元达. 精细与专用化学品, 2000, 9(18): 21]

    5. [5]

      [5] Zhang, G. Y. China Pulp & Paper, 2005, 24(10): 57 [张国运. 中国造纸, 2005, 24(10): 57]

    6. [6]

      [6] Harris, G. C. Org. Synth., 1952, 32(1): 1

    7. [7]

      [7] Wang, T.; Su, Z. A. Chemistry & Industry of Forest Products, 1991, 11(3): 173 [王 涛, 粟子安. 林产化学与工业, 1991, 11 (3): 173]

    8. [8]

      [8] Qin, R. X.; Huang, P. X.; Liu, X. M.; Ma, L.; Wu, Y. L. Chem. J. Chin. Univ., 2009, 30(5): 954 [秦荣秀, 黄品鲜, 刘雄民, 马 丽, 吴晏玲. 高等学校化学学报, 2009, 30(5): 954]

    9. [9]

      [9] Muthuramu, K.; Ramamurthy, V. J. Org. Chem., 1982, 47(10): 3976

    10. [10]

      [10] Li, C. M.; Hou, J.; Yu, Y.; Pan, X. X.; Hou, H. Q. Environmental Chemistry, 2000, 19(1): 18 [李朝敏, 侯 健, 于 勇, 潘循皙, 侯惠奇. 环境化学, 2000, 19(1): 18]

    11. [11]

      [11] Zhang, J. C.; Wang, D. Y. Modern photochemistry. Beijing: Chemical Industry Press, 2006: 137-255 [张建成, 王夺元. 现代光化学. 北京: 化学工业出版社, 2006: 137-255]

    12. [12]

      [12] Song, W.; Jiang, L. P.; Wang, Y.; Li, R. Q. Journal of Tianjin University, 2004, 37(11): 959 [宋 威, 蒋龙平, 王 颖, 李润卿. 天津大学学报, 2004, 37(11): 959]

    13. [13]

      [13] Moore, R. N.; Lawrence, R. V. J. Am. Chem. Soc., 1958, 80(6): 1438

    14. [14]

      [14] Moore, R. N.; Lawrence, R. V. J. Am. Chem. Soc., 1960, 82(7): 1734

    15. [15]

      [15] Moore, R. N.; Lawrence, R. V. J. Am. Chem. Soc., 1961, 83(10): 2563

    16. [16]

      [16] Schuller, W. H.; Minor, J. C.; Lawrence, R. V. Ind. Eng. Chem. Prod. Res. Dev., 1964, 3(2): 97

    17. [17]

      [17] Barbara, G.; Ana, M. L.; Joao, M. C.; Sundaresan, P.; Henry, S. R. Tetrahedron Computer Methodology, 1988, 1(2): 133

    18. [18]

      [18] Wang, S. H.; Chen, D. W. Acta Phys. -Chim. Sin., 1998, 14(5): 458 [王素华, 陈德文. 物理化学学报, 1998, 14(5): 458]

    19. [19]

      [19] Harris, G. C.; Sanderson, T. F. J. Am. Chem. Soc., 1948, 70(1): 334

    20. [20]

      [20] Liu, S. C. Advanced physics chemistry. Zhengzhou: Zhengzhou Univercity Press, 2005: 35-37 [刘寿长. 高等物理化学. 郑州: 郑州大学出版社, 2005: 35-37]

    21. [21]

      [21] Qin, R. X.; Liu, X. M.; Ma, L.; Wu, Y. L. Applied Chemical Industry, 2008, 37(11): 1381 [秦荣秀, 刘雄民, 马 丽, 吴晏玲. 应用化工, 2008, 37(11): 1381]

    22. [22]

      [22] Xu, Y. Chemical reaction kinetics. Beijing: Chemical Industry Press, 2005: 203-205 [许 越. 化学反应动力学. 北京: 化学工业出版社, 2005: 203-205]

    23. [23]

      [23] Cui, W. Q.; Feng, L. R.; Xu, C. H.; Lü, S. J.; Qiu, F. L. Acta Chim. Sin., 2005, 63(3): 203 [崔文权, 冯良荣, 徐成华, 吕绍洁, 邱发礼. 化学学报, 2005, 63(3): 203]

    24. [24]

      [24] Song, Z. Q. Journal of Chemical Industry of Forest Products (Bimonthly), 2002, 36(4): 29 [宋湛谦. 林产化工通讯, 2002, 36 (4): 29]

    25. [25]

      [25] Wang, S. F. Chemistry and Industry of Forest Products, 2007, 27 (32): 31 [王石发. 林产化学与工业, 2007, 27(32): 31]


  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    4. [4]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    5. [5]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

Metrics
  • PDF Downloads(1258)
  • Abstract views(4849)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return