Citation: LIU Xiao-Fang, LI Xue-Qiang, YE Wu-Long, ZHOU Bin-Bin, LIU You-Nian. Synthesis of Ferrocenoyl-Labeled Tripeptide Fc-Gly-Pro-Arg(NO2)-OMe and Its Interaction with Cu(II)[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2381-2386. doi: 10.3866/PKU.WHXB20100827 shu

Synthesis of Ferrocenoyl-Labeled Tripeptide Fc-Gly-Pro-Arg(NO2)-OMe and Its Interaction with Cu(II)

  • Received Date: 9 March 2010
    Available Online: 25 June 2010

    Fund Project: 国家自然科学基金(20876179)资助项目 (20876179)

  • N-ferrocenoyl-labeled tripeptide Fc-Gly-Pro-Arg(NO2)-OMe(Fc-GPR) was synthesized from ferrocene-carboxylic acid, glycine (H-Gly-OMe), proline (Boc-Pro-OH) and arginine (H-Arg(NO2)-OMe) by solution synthesis with a yield of 48.1%. The synthesized Fc-GPR was characterized by infrared spectroscopy (IR), proton nuclear magnetic resonance spectroscopy (1H-NMR) and electrospray ionization mass spectroscopy (ESI-MS). The electrochemical behavior of Fc-GPR was investigated using electrochemical methods. We observed a pair of well-defined voltammetric peaks with cathodic Epc and anodic peak potentials Epa, at 0.552 and 0.624 V (vs Ag/AgCl), respectively. The ratio of oxidative to reductive peak current is 1.13 and the peak currents were found to be proportional to the square root of the scan rates suggesting that Fc-GPRunder es a reversible electron transfer reaction. The molar ratio of Fc-GPR to Cu(II) was found to be 2:1 by the molar ratio method. Furthermore, the electrode reaction of Fc-GPR with Cu(II) is an electrochemical-chemical-electrochemical (ECE) process.

  • 加载中
    1. [1]

      1. van Staveren, D. R.; Metzler-Nolte, N. Chem. Rev., 2004, 104: 5931

    2. [2]

      2. Duivenvoorden, W. C. M.; Liu, Y. N.; Schatte, G.; Kraatz, H. B. Inorg. Chim. Acta, 2005, 358: 3183

    3. [3]

      3. Miklán, Z.; Szabó, R.; Zsoldos-Mády, V.; Reményi, J.; Bánóczi, Z.; Hudecz, F. Biopolymer, 2007, 88: 108

    4. [4]

      4. Paitayatat, S.; Tarnchompoo, B.; Thebtaranonth, Y.; Yuthavong, Y. J. Med. Chem., 1997, 40: 633

    5. [5]

      5. Chen, C. H.; Li, H.; Zhu, W.; Zhang, Q. X. Acta Phys. -Chin. Sin., 2005, 21: 1067 [陈灿辉,李红,朱伟, 张全新.物理化学学 报, 2005, 21: 1067]

    6. [6]

      6. swami, T. K.; Roy, M.; Nethaji, M.; Chakravarty, A. R. Organometallics, 2009, 28: 1992

    7. [7]

      7. Mahmoud, K. A.; Luong, J. H. T. Anal. Chem., 2008, 80: 7056

    8. [8]

      8. Deng, X. H.; Kan, X.W.; Yu, Y.; Zhang, W. Z.; Liu, H. Y.; Fang, B. Acta Phys. -Chim. Sin., 2005, 21: 1399 [邓湘辉,阚显文, 尉艳,张文芝,刘红英,方宾.物理化学学报, 2005, 21: 1399]

    9. [9]

      9. Ioudina, M.; Uemura, E. Exp. Neurol., 2003, 184: 923

    10. [10]

      10. Furlan, M.; Rupp, C.; Beck, E. A. BBA-Protein. Struct. M., 1983, 742: 25

    11. [11]

      11. Furlan, M.; Rupp, C.; Beck, E. A.; Svendsen, L. Thromb. Haemost., 1982, 47: 118

    12. [12]

      12. Brewer, G. J. Chem. Res. Toxicol., 2009, 10: 1021

    13. [13]

      13. Multhaup, G. Biomed. Pharmacother., 1997, 51: 105

    14. [14]

      14. Donnelly, P. S.; Xiao, Z.; Wedd, A. G. Curr. Opin. Chem. Biol., 2007, 11: 128

    15. [15]

      15. Meloni, G. J. Biol. Chem., 2007, 282: 16068

    16. [16]

      16. Freedman, J. H.; Pickart, L.; Weinstein, B.; Mims, W. B.; Peisach, J. Biochemistry, 1982, 21: 4540

    17. [17]

      17. Pickart, L.; Freedman, J. H.; Loker, W. J.; Peisach, J.; Perkins, C. M.; Steinkamp, R. E.; Weinstein, B. Nature, 1980, 288: 715

    18. [18]

      18. Freedman, J. H.; Ciriolo, M. R.; Peisach, J. J. Biol. Chem., 1989, 264: 5598

    19. [19]

      19. Bari?icc, L.;Cakicc, M.; Mahmoud, K. A.; Liu, Y. N.; Kraatz, H. B.; Pritzkow, H.; Kirin, S. I.; Metzler-Nolte, N.; Rapicc, V. Chem. Eur. J., 2006, 12: 4965

    20. [20]

      20. Xiang, J.; Peng, Y.; Schatte, G.; Yang, Q.; Liu, Y. N. Z. Kristallogr., 2009, 224: 551

    21. [21]

      21. Wang, F. B.; Peng, Y.; Fan, M. Y.; Liu, Y. N.; Hung, K. L. Acta Phys. -Chim. Sin., 2009, 25: 1125 [王芳斌,彭勇,范美意, 刘又年,黄可龙. 物理化学学报, 2009, 25: 1125]

    22. [22]

      22. Momoki, K.; Sekino, J.; Sato, H.; Yamaguchi, N. Anal. Chem., 1969, 41: 1286

    23. [23]

      23. Muller, E.; Bernardinelli, G.; Reedijk, J. Inorg. Chem., 1996, 35: 1952

    24. [24]

      24. Woltman, S. J.; Alward, M. R.; Weber, S. G. Anal. Chem., 1995, 67: 541

    25. [25]

      25. Delavaux-Nicot, B.; Bigeard, A.; Bousseksou, A.; Donnadieu, B.; Commenges, G. Inorg. Chem., 1997, 36: 4789

    26. [26]

      26. Taha, A. Spectrochim. Acta A, 2003, 59: 1373

    27. [27]

      27. Meng, R.; Weber, S. G. J. Electroanal. Chem., 2007, 600: 325

    28. [28]

      28. Feldberg, S. W. J. Phys. Chem., 1971, 75: 2377

    29. [29]

      29. Polcyn, D. S.; Shain, I. Anal. Chem., 1966, 38: 370

    30. [30]

      30. Bard, A. J.; Faulkner, L. R. Electrochemical methods: fundamentals and applications. 2nd ed. NewYork: Wiley, 2001: 471-528


  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    9. [9]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    12. [12]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    13. [13]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    19. [19]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    20. [20]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

Metrics
  • PDF Downloads(1132)
  • Abstract views(2576)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return