Citation: GUO Xia, LI Hua, GUO Rong. Coexistence of Oli nucleotide/Single-Chained Cationic Surfactant Vesicles with Precipitates[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2195-2199. doi: 10.3866/PKU.WHXB20100826
-
It is well known that DNA (including oli nucleotide) and cationic surfactant can form insoluble complex. In this study, by turbidity measurement and TEM image, we found that the single-chained cationic surfactant could transform the oli nucleotide/single-chained cationic surfactant precipitates into vesicles and the vesicles coexist with the insoluble complex. The hydrophobic interaction between the cationic surfactant and the precipitates plays a key role in vesicle formation. Moreover, when the temperature reaches a specific value where the oli nucleotide begins to melt, the oli nucleotide/single-chained cationic surfactant vesicles form far easier. Thus, the more extended the oli nucleotide, the much easier for vesicle formation. As far as we know, the study about the oli nucleotide/cationic surfactant vesicle formation is very limited. Therefore, considering the growing importance and significance of DNA (including oli nucleotide)/amphiphile systems in medicine, biology, pharmaceutics, and chemistry, this study should provide some helpful information in further understanding these systems.
-
-
[1]
[1]. Fendler, J. H. Membrane mimetic chemistry. New York: Wiley, 1982: 110-125
-
[2]
[2]. Holowka, E. P.; Pochan, D. J.; Deming, T. J. J. Am. Chem. Soc., 2005, 127: 12423
-
[3]
[3]. Tomasic, V.; Tomasic, A.; cmit, I.; Filipovic-Vincekovic, N. J. Colloid Interface Sci., 2005, 285: 342
-
[4]
[4]. Wang, Y.; Guo, X.; Guo, R. J. Colloid Interface Sci., 2008, 317: 568
-
[5]
[5]. de Lima, M. C. P.; Simoes, S.; Pires, P.; Faneca, H.; Duzgunes, N. Adv. Drug Delivery Rev., 2001, 47: 277
-
[6]
[6]. Pontius, B. W.; Berg, P. Proc. Natl. Acad. Sci. U. S. A., 1991, 88: 8237
-
[7]
[7]. Geck, P.; Nasz, I. Anal. Biochem., 1983, 135: 264
-
[8]
[8]. Allers, T.; Lichten, M. Nucleic Acids Research, 2000, 28: e6
-
[9]
[9]. McLoughlin, D. M.; O'Brien, J.; Canus, J. J.; relov, A. V.; Dawson, K. A. Bioseparation, 2000, 9: 307
-
[10]
[10]. Lander, R. J.; Winters, M. A.; Meacle, F. J.; Buckland, B. C.; Lee, A. L. Biotechnol. Bioeng., 2002, 79: 776
-
[11]
[11]. Bell, P. C.; Bergsma, M.; Dolbnya, I. P.; Brass, W.; Stuart, M. C. A.; Rowan, A. E.; Feiters, M. C.; Engberts, J. B. F. N. J. Am. Chem. Soc., 2003, 125: 1551
-
[12]
[12]. Vijayanathan, V.; Thoma, T.; Thomas, T. J. Biochemistry, 2002, 41: 14085
-
[13]
[13]. Mel′nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K. J. Am. Chem. Soc., 1995, 117: 2401
-
[14]
[14]. Zhu, D. M.; Evans, R. K. Langmuir, 2006, 22: 3735
-
[15]
[15]. Clamme, J. P.; Bernacchi, S.; Vuilleumier, C.; Duportail, G.; Mely, Y. Biochimica et Biophysica Acta, 2000, 1467: 347
-
[16]
[16]. Mel′nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K.; Takahashi, H.; Hatta, I. J. Chem. Phys., 1997, 107: 6917
-
[17]
[17]. Sergeyev, V. G.; Mikhailenko, S. V.; Pyshkina, O. A.; Yaminsky, I. V.; Yoshikawa, K. J. Am. Chem. Soc., 1999, 121: 1780
-
[18]
[18]. Ghirlando, R.; Wachtel, E. J.; Arad, T.; Minsky, A. Biochemistry, 1992, 31: 7110
-
[19]
[19]. Zhou, S.; Liang, D.; Burger, C.; Yeh, F.; Chu, B. Biomacromolecules, 2004, 5: 1256
-
[20]
[20]. Krishnaswamy, R.; Mitra, P.; Raghunathan, V. A.; Sood, A. K. Europhys. Lett., 2003, 62: 357
-
[21]
[21]. Hsu, W. L.; Chen, H. L.; Liou, W.; Lin, H. K.; Liu, W. L. Langmuir, 2005, 21: 9426
-
[22]
[22]. Karlsson, L.; van Eijk, M. C. P.; Soderman, O. J. Colloid Interface Sci., 2002, 252: 290
-
[23]
[23]. Pizzey, C. L.; Jewell, C. M.; Hays, M. E.; Lynn, D. M.; Abbott, C. L. J. Phys. Chem. B, 2008, 112: 5849
-
[24]
[24]. Guo, X.; Li, H.; Zhang, F. M.; Zheng, S. Y.; Guo, R. J. Colloid Interface Sci., 2008, 324: 185
-
[25]
[25]. Guo, X.; Cui, B.; Li, H.; ng, Z.; Guo, R. J. Polym. Sci. A, 2009, 47: 434
-
[26]
[26]. Spink, C. H.; Chaires, J. B. J. Am. Chem. Soc., 1997, 119: 10920
-
[27]
[27]. Zhang, Z.; Huang, W.; Tang, J.; Wang, E.; Dong, S. Biophys. Chem., 2002, 97: 7
-
[28]
[28]. Marck, C.; Thiele, D. Nucleic Acids Research, 1978, 5: 1017
-
[29]
[29]. Ivanov, V. I.; Minchenkova, L. E.; Schyolkina, A. K.; Poletayev, A. I. Biopolymers, 1973, 12: 89
-
[30]
[30]. Dias, R. S.; Magno, L. M.; Valente, A. J. M.; Das, D.; Prasanta, K.; Maiti, S.; Miguel, M. G.; Lindman, B. J. Phys. Chem. B, 2008, 112: 14446
-
[31]
[31]. Hayakawa, K.; Santerre, J. P.; Kwak, J. C. T. Biophys. Chem., 1983, 17: 175
-
[1]
-
-
[1]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[2]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[3]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[4]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[5]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[6]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[7]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[8]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[9]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[10]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[11]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[12]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[13]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[14]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[15]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[16]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[17]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[18]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[19]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[20]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[1]
Metrics
- PDF Downloads(1047)
- Abstract views(2808)
- HTML views(5)