Citation: ZOU Yan, WANG Jia, ZHENG Ying-Ying. Electrochemical Corrosion Behaviors of Rusted Carbon Steel[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2361-2368. doi: 10.3866/PKU.WHXB20100825 shu

Electrochemical Corrosion Behaviors of Rusted Carbon Steel

  • Received Date: 21 February 2010
    Available Online: 25 June 2010

    Fund Project: 国家自然科学基金(50971118)资助项目 (50971118)

  • Electrochemical methods including polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) were used to characterize and investigate the electrochemical behavior of rusted carbon steel immersed in seawater. Results indicate that the inner rust layer that forms on the surface of the carbon steel after long-term immersion greatly affects the electrode process. Polarization resistance (Rp), determined by LPR and EIS, increases during the initial immersion period. After long-term immersion, it decreases. Rp initially increases and then decreases gradually with immersion time. The electrochemical characteristics of the rusted carbon steel were studied by removing the outer and inner rust layers. The materials were analyzed by Fourier transform infrared (FTIR) spectroscopy and their cross-sectional morphologies were obtained to determine the cause. The results show that the β-FeOOH, which exists in the inner rust layer, has high electrochemical activity. Its content increases with the growth of the inner rust layer. In the electrochemical tests, even a small amount of polarization allows β-FeOOH to participate in the cathodic reduction reaction. Besides the anodic dissolution of iron and the cathodic reduction of oxygen, rust reduction is also possible. For this reason, the cathodic reaction rate is promoted and Rp decreases.

  • 加载中
    1. [1]

      1. Hou, B. R. Oceanologia et Limnologia Sinica, 1995, 26(5): 514 [侯保荣.海洋与湖沼, 1995, 26(5): 514]

    2. [2]

      2. Bousselmi, L.; Fiaud, C.; Tribollets, B.; Triki, E. Corrosion Sci., 1997, 39(9): 1711

    3. [3]

      3. Duan, J. Z.;Wu, S. R.; Zhang, X. J.; Huang, G. Q.; Du, M.; Hou, B. R. Electrochim. Acta, 2008, 54(1): 22

    4. [4]

      4. García, K. E.; Morales, A. L.; Barrero, C. A.; Greneche, J. M. Corrosion Sci., 2006, 48(9): 2813

    5. [5]

      5. Ma, Y. T.; Li, Y.;Wang, F. H. Mater. Chem. Phys., 2008, 112(3): 844

    6. [6]

      6. Yamashita, M.; Miyuki, H.; Matsuda, Y.; Nagano, H.; Misawa, T. Corrosion Sci., 1994, 36(2): 283

    7. [7]

      7. Stratmann, M.; Müller, J. Corrosion Sci., 1994, 36(2): 327

    8. [8]

      8. Stratmann, M.; Bohnenkamp, K.; Engell, H. J. Corrosion Sci., 1983, 23(9): 969

    9. [9]

      9. Stratmann, M.; HoVmann, K. Corrosion Sci., 1989, 29(11-12): 1329

    10. [10]

      10. Stratmann, M.; Streckel, H. Corrosion Sci., 1990, 30(6-7): 697

    11. [11]

      11. Nishimura, T.; Tanaka, I.; Shimizu, Y. Tetsu-to-Hagane, 1995, 81: 1079

    12. [12]

      12. Andrade, C.; Keddam, M.; Nóvoa, X. R.; Pérez, M. C.; Rangel, C. M.; Takenouti, H. Electrochim. Acta, 2001, 46(24-25): 3905

    13. [13]

      13. nzález, J. A.; Miranda, J. M.; Otero, E.; Feliu, S. Corrosion Sci., 2007, 49(2): 436

    14. [14]

      14. Flis, J.; Pickering, H.W.; Osseo-Asare, K. Electrochim. Acta, 1998, 43(12-13): 1921

    15. [15]

      15. Videm, K. Electrochim. Acta, 2001, 46(24-25): 3895

    16. [16]

      16. Panda, B.; Balasubramaniam, R.; Dwivedi, G. Corrosion Sci., 2008, 50(6): 1684

    17. [17]

      17. Bousselmi, L.; Fiaud, C.; Tribollet, B.; Triki, E. Electrochim. Acta, 1999, 44(24): 4357

    18. [18]

      18. Antony, H.; Perrin, S.; Dillmann, P.; Legrand, L.; Chaussé, A. Electrochim. Acta, 2007, 52(27): 7754

    19. [19]

      19. Lair, V.; Antony, H.; Legrand, L.; Chaussé, A. Corrosion Sci., 2006, 48(8): 2050


  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    12. [12]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    19. [19]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    20. [20]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

Metrics
  • PDF Downloads(1559)
  • Abstract views(2652)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return