Citation: LI Ya-Juan, ZHAN Hui, LIU Su-Qin, HUANG Ke-Long, ZHOU Yun-Hong. Nanosized Flame Retarded HydroxideMagnesium/Poly(ethylene-oxide) Composite Polymer Electrolyte[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2387-2391. doi: 10.3866/PKU.WHXB20100818 shu

Nanosized Flame Retarded HydroxideMagnesium/Poly(ethylene-oxide) Composite Polymer Electrolyte

  • Received Date: 15 January 2010
    Available Online: 23 June 2010

    Fund Project: 中国博士后基金(20080440989) (20080440989)高等学校博士学科点专项科研基金(20090162120011)资助项目 (20090162120011)

  • We prepared nanosized hydroxide magnesium (Mg(OH)2) as a plasticizer and a flame-retarding additive for a poly(ethylene-oxide) (PEO) based polymer electrolyte. We characterized the prepared compound using transition electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetry (TG). The prepared hydroxide magnesium particles are hexa nal crystals with sizes of 50-80 nm. The decomposition of the prepared nanosized hydroxide magnesium started at 340 ℃. Electrochemical measurements shows that the ionic conductivity of the Mg(OH)2/PEO composite polymer electrolytes (CPEs) increases initially and then decreases with an increase in hydroxide magnesium content. It reaches a maximum when the hydroxide magnesium mass fraction is between 5% and 10%. The anodic decomposition potential of the CPEs increases to a certain extent as the hydroxide magnesium content increases. Hydroxide magnesiumhas a positive influence on the electrochemical stability of PEO.

  • 加载中
    1. [1]

      1. Armand, M. Solid State Ionics, 1994, 69: 309

    2. [2]

      2. Glasse, M. D.; Idris, R.; Latham, R. J.; Linford, R. G.; Schlindwein,W. S. Solid State Ionics, 2002, 147: 289

    3. [3]

      3. Park, Y. W.; Lee, D. S. J. Non-Cryst. Solids, 2005, 351: 144

    4. [4]

      4. Itoh, T.; Hirata, N.; Wen, Z. Y.; Kubo, M.; Yamamoto, O. J. PowerSources, 2001, 97-98: 637

    5. [5]

      5. Yu, X. Y.; Xiao, M.; Wang, S. J.; Zhao, Q. Q.; Meng, Y. Z. J. Appl.Polymer Sci., 2010, 115: 2718

    6. [6]

      6. Li, X. L.; Guo, J.;Wu, Q.; Cheng, Y.; Long, Y. C.; Jiang, Z. Y.Acta Phys. -Chim. Sin., 2005, 21: 397 [李雪莉,郭娟,吴强,程岩,龙英才, 江志裕. 物理化学学报, 2005, 21: 397]

    7. [7]

      7. Sumathipala, H. H.; Hassoun, J.; Panero, S.; Scrosati, B. Ionics,2007, 13: 281

    8. [8]

      8. Wang, L. S.; Yang, W. S.; Li, X. W.; Evans, D. G. Electrochem.Solid-State Lett., 2010, 13: A7

    9. [9]

      9. Rossi, N. A. A.; West, R. Polym. Int., 2009, 58: 267

    10. [10]

      10. Walls, H. J.; Zhou, J.; Yerian, J. A.; Fedkiw, P. S.; Khan, S. A.;Stowe, M. K.; Baker, G. L. J. Power Sources, 2000, 89: 156

    11. [11]

      11. Scrosati, B.; Croce, F.; Persi, L. J. Electrochem. Soc., 2000, 147(5): 1718

    12. [12]

      12. Kumar, B.; Scanlon, L.; Marsh, R.; Mason, R.; Higgins, R.;Baldwin, R. Electrochim. Acta, 2001, 46: 1515

    13. [13]

      13. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati,B.; Caminiti, R. J. Phys. Chem. B, 1999, 103: 10632

    14. [14]

      14. Sun, H. Y.; Takeda, Y.; Imanishi, N.; Yamamoto, O.; Sohn, H. J.J. Electrochem. Soc., 2000, 147(7): 2462

    15. [15]

      15. Appetecchi, G. B.; Dautzenberg, G.; Scrosati, B. J. Electrochem.Soc., 1996, 143(1): 6

    16. [16]

      16. Appetecchi, G. B.; Passerini, S. Electrochim. Acta, 2000, 45: 2139

    17. [17]

      17. Borkowska, R.; Reda, A.; Zalewska, A.;Wieczorek, W.Electrochim. Acta, 2001, 46: 1737

    18. [18]

      18. Aihara, Y.; Kuratomi, J.; Bando, T.; Iguchi, T.; Yoshida, H.; Ono,T.; Kuwana, K. J. Power Sources, 2003, 114: 96

    19. [19]

      19. Yoshizawa, M.; Mukai, T.; Ohtake, T.; Kanie, K.; Kato, T.; Ohno,H. Solid State Ionics, 2002, 154-155: 779

    20. [20]

      20. Zhang, Z. C.; Sherlock, D.; West, R.; West, R.; Amine, K.; Lyons,L. J. Macromolecules, 2003, 36: 9176

    21. [21]

      21. Kang, Y. K.; Lee, J.; Suh, D. H.; Lee, C. J. Power Sources, 2005,146: 391

    22. [22]

      22. Liang, Y. H.; Wang, C. C.; Chen, C. Y. Eur. Polym. J., 2008, 44:2376

    23. [23]

      23. Hong, L.; Cui, Y. J.;Wang, X. L.; Tang, X. Z. J. Polym. Sci. Pol.Phys., 2003, 41: 120

    24. [24]

      24. Yang, X. H.; Sun, X. Y.; Shao, J. J.; Liu, Y. H.; Wang, X. L.J. Polym. Sci. Pol. Phys., 2004, 42: 4195

    25. [25]

      25. Bai, Y.; Pan, C. H.; Wu, F.; Wu, C.; Ye, L.; Feng, Z. G. Chem. J.Chin. Univ., 2007, 28: 1796 [白莹,潘春花, 吴锋,吴川,叶霖,冯增国. 高等学校化学学报, 2007, 28: 1796]

    26. [26]

      26. Saito, M.; Ikuta, H.; Uchimoto, Y.;Wakihara, M.; Yokoyama, S.;Yabe, T.; Yamamoto, M. J. Phys. Chem. B, 2003, 107: 11608

    27. [27]

      27. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature, 1998,394: 456.

    28. [28]

      28. Jia, X. W. Flame retarding nano-materials. Beijing: ChemicalIndustry Press, 2005 [贾修伟.纳米阻燃材料.北京: 化学工业出版社, 2005]


  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

Metrics
  • PDF Downloads(1177)
  • Abstract views(2967)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return