Citation: CHAO Wen-Liu, WAN Yong, WANG Yun-Xia, LIU Chang-Song, . Tribological Properties of Cu-Doped TiO2 Films[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2317-2322. doi: 10.3866/PKU.WHXB20100816 shu

Tribological Properties of Cu-Doped TiO2 Films

  • Corresponding author:
  • Received Date: 25 January 2010
    Available Online: 21 June 2010

    Fund Project: 山东省自然科学基金(Y2008F05) (Y2008F05)青岛市应用基础研究基金(09-1-3-35-jch)资助项目 (09-1-3-35-jch)

  • Undoped TiO2 and Cu-doped TiO2 (Cu-TiO2) nano-structured thin films were prepared by a sol-gel process on glass substrates. We investigated their structures, surface morphologies, and tribological properties by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD), and friction and wear testing using a UMT-3 tester. We found that the prepared Cu-TiO2 films were smoother and more uniform than the undoped TiO2 films and they had better friction-reducing and anti-wear properties. The amount of Cu dopant directly affects the tribological performance of the doped TiO2 film. The 5%(mole fraction) Cu-TiO2 film possesses the longest wear life and the lowest friction coefficient.

  • 加载中
    1. [1]

      [1]. Kim, S. H.; Asay, D. B.; Dugger, M. T. Nanotoday, 2007, 2: 22

    2. [2]

      [2]. Bhushan, B. Microelectron. Eng., 2007, 84: 387

    3. [3]

      [3]. Mayer, T. M.; Elam, J. W.; George, S. M.; Kotula, P. G.; eke, R. S. Appl. Phys. Lett., 2003, 82: 2883

    4. [4]

      [4]. Liu, W. M.; Chen, Y. X.; Li, B. Tribology, 2003, 23:162. [刘维民, 陈云霞, 李 斌. 摩擦学学报, 2003, 23: 162]

    5. [5]

      [5]. Chen, X.; Geng, Q.; Liu, J. F.; Ding, Z. X.; Dai, W. X.; Wang, X. X. Acta Phys. -Chim. Sin., 2009, 25(11):2237. [陈 旬, 耿 强, 刘军峰, 丁正新, 戴文新, 王绪绪. 物理化学学报, 2009, 25(11): 2237]

    6. [6]

      [6]. Meth, S.; Savchenko, N.; Koltypin, M.; Starosvetsky, D.; Viva, F. A.; Groysman, A.; Sukenik, C. N. Corrosion Sci., 2010, 52: 125

    7. [7]

      [7]. Shen, J. J.; Liu, C.; Zhu, Y. D.; Li, W.; Feng, X.; Lu, X. H. Acta Phys. -Chim. Sin., 2009, 25(5):1013. [沈晶晶, 刘 畅, 朱育丹, 李 伟, 冯 新, 陆小华. 物理化学学报, 2009, 25(5): 1013]

    8. [8]

      [8]. Yu, J. G.; Yu, J. C.; Ho, W. K.; Jiang, Z. T. New J. Chem., 2002, 26: 607

    9. [9]

      [9]. Zhang, W. G.; Liu, W. M.; Li, B.; Mai, G. J. Am. Ceram. Soc., 2002, 85: 1770

    10. [10]

      [10]. Chen, Y. X.; Liu, W. M.; Zhang, P. Y.; Shao, S. J. Chem. J. Chin. Univ., 2002, 23(8):1574. [陈云霞, 刘维民, 张平余, 邵士俊. 高等学校化学学报, 2002, 23(8): 1574]

    11. [11]

      [11]. Wang, Y. X.; Wang, H. L.; Yan, F. Y. Surf. Interface Anal., 2009, 41: 399

    12. [12]

      [12]. Zhang, W. G.; Wang, C. T.; Liu, W. M. Wear, 2006, 260: 379

    13. [13]

      [13]. Jia, Q. Y.; Zhang, Y. J.; Wu, Z. S.; Zhang, P. Y. Trib. Lett., 2007, 26: 19

    14. [14]

      [14]. Wang, Y. X.; Yan, F. Y. J. Mater. Sci. Eng., 2005, (5):590. [王云霞, 阎逢元. 材料科学与工程学报, 2005, (5): 590]

    15. [15]

      [15]. Celik, E.; kcen, Z.; Ak Azem, N. F.; Tanoglu, M.; Emrullahoglu, O. F. Mater. Sci. Eng.-B, 2006, 132: 258

    16. [16]

      [16]. Jiang, H. B.; Gao, L.; Zhang, Q. H. J. Inorg. Mater., 2002, 17: 787 [姜洪波, 高 濂, 张青红. 无机材料学报, 2002, 17: 787]

    17. [17]

      [17]. Wu, S. X.; Ma, Z.; Qing, Y. N.; He, F.; Jia, L. S.; Zhang, Y. J. Acta Phys. -Chim. Sin., 2003, 19(10):967. [吴树新, 马 智, 秦永宁, 何 菲, 贾立山, 张彦军. 物理化学学报, 2003, 19(10): 967]

    18. [18]

      [18]. Linsebigler, A. L.; Luo, G. Q. Chem. Rev., 1995, 95:735

    19. [19]

      [19]. Liu, S. H.; Luo, J. B.; Li, G.; Zhang, C. H.; Lu, X. C. Appl. Surf. Sci., 2008, 254: 7137

    20. [20]

      [20]. Optiz, A.; Ahmed, S. I. U.; Schaefer, J. A.; Scherge, M. Wear, 2003, 254: 924


  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    4. [4]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    5. [5]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    10. [10]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    11. [11]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    12. [12]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    13. [13]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    14. [14]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    15. [15]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    16. [16]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    18. [18]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    19. [19]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(1233)
  • Abstract views(2676)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return