Citation: HU Song-Qing, HU Jian-Chun, FAN Cheng-Cheng, MI Si-Qi, ZHANG Jun, GUO Wen-Yue. Corrosion Inhibition of Q235 Steel by a Novel Imidazoline Compound under H2S and CO2 Coexistence[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2163-2170. doi: 10.3866/PKU.WHXB20100809 shu

Corrosion Inhibition of Q235 Steel by a Novel Imidazoline Compound under H2S and CO2 Coexistence

  • Received Date: 6 January 2010
    Available Online: 11 June 2010

    Fund Project: 中石油中青年创新基金(2008D-5006-02) (2008D-5006-02)中石化普光气田缓蚀剂技术研究项目(309003) (309003)国家大学生创新实验计划项目(091042546)资助 (091042546)

  • We synthesized a new imidazoline compound, 1-(2-amido-thioureaethyl)- 2-pentadecyl-imidazoline (IM-S). The corrosion inhibition performance and adsorption behavior for mild steel corrosion under H2S and CO2 coexistence were investigated by weight loss method, polarization curve, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The results indicated that IM-S had excellent corrosion inhibition performance, and both cathodic and anodic processes of mild steel corrosion were suppressed. The highest inhibition efficiency was 92.74%. We found that the adsorption of IM-S on mild steel could be fitted to a Langmuir isotherm equation, and it belonged to a mix-type adsorption, which was mainly dominated by chemisorption. The relationship between the molecular structure of IM-S and the inhibition efficiency was investigated using quantum chemical calculations.

  • 加载中
    1. [1]

      [1]. Hu, S. Q.; Hu, J. C.; Shi, X.; Zhang, J.; Guo, W. Y. Acta Phys. -Chim. Sin., 2009, 25(12):2524. [胡松青, 胡建春, 石 鑫, 张 军, 郭文跃. 物理化学学报, 2009, 25(12): 2524]

    2. [2]

      [2]. Wang, Y. F.; You, Q.; Zhao, F. L. Acta Petrolei Sinica (Petroleum Processing Section), 2006, 22(3):74. [王业飞, 由 庆, 赵福麟. 石油学报(石油加工), 2006, 22(3): 74]

    3. [3]

      [3]. Hu, J. C.; Hu, S. Q.; Shi, X.; Zhang, J.; Chi, Y. H. J. Qingdao Univ.:Engineering and Technology, 2009, 24(2):90. [胡建春, 胡松青, 石 鑫, 张 军, 匙玉华. 青岛大学学报: 工程技术版, 2009, 24(2): 90]

    4. [4]

      [4]. Zhang, J.; Du, M.; Yu, H. H.; Wang, N. Acta Phys. -Chim. Sin., 2009, 25(3):525. [张 静, 杜 敏, 于会华, 王 宁. 物理化学学报, 2009, 25(3): 525]

    5. [5]

      [5]. Rodríguez, L. M.; Villamisar, W.; Casales, M.; nz?觃lez-Rodriguez, J. G.; Martínez-Villafa?觡e, A.; Martinez, L.; Glossman-Mitnik, D. Corrosion Sci., 2006, 48: 4053

    6. [6]

      [6]. Xia, S. W.; Qiu, M.; Yu, L. M.; Liu, F. G.; Zhao, H. Z. Corrosion Sci., 2008, 50: 2021

    7. [7]

      [7]. Zhang, J.; Hu, S. Q.; Wang, Y.; Guo, W. Y.; Liu, J. X.; You, L. Acta Chim. Sin., 2008, 66(22):2470. [张 军, 胡松青, 王 勇, 郭文跃, 刘金祥, 尤 龙. 化学学报, 2008, 66(22): 2470]

    8. [8]

      [8]. Liu, X.; Zheng, Y. G. J. Chin. Soc. Corros. Prot., 2009, 29(5): 333[刘 瑕, 郑玉贵. 中国腐蚀与防护学报, 2009, 29(5): 333]

    9. [9]

      [9]. Zhao, L.; Teng, H. K.; Yang, Y. S. Mater. Corros., 2004, 55(9):684

    10. [10]

      [10]. Wang, H. L.; Xin, J.; Fan, H. B.; Zheng, J. Y. J. Chin. Soc. Corros. Prot., 2001, 21(6):321. [王慧龙, 辛 剑, 范洪波, 郑家燊. 中国腐蚀与防护学报, 2001, 21(6): 321]

    11. [11]

      [11]. Cao, C. N. Principle of corrosion electrochemistry. Beijing: Chemical Industry Press,2004. [曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2004]

    12. [12]

      [12]. Liu, F. G. The study of corrosion mechanism of drill pipe and pipeline, inhibition and mechanism of the inhibitor for drill pipe and pipeline[D]. Qingdao: Ocean University of China, 2008 [刘福国. 油田钻具、管道系统腐蚀规律及缓蚀剂缓蚀性能和机制研究[D]. 青岛: 中国海洋大学, 2008]

    13. [13]

      [13]. Zhang, S. G.; Yang, P. J. Chin. Soc. Corros. Prot., 2004, 24(4):240. [张士国, 杨 频. 中国腐蚀与防护学报, 2004, 24(4) : 240]

    14. [14]

      [14]. Zhang, X. Y.; Ma, L. M.; Du, Y. L.; Cao, D. Z. Chin. J. Appl. Chem., 1998, 15(6):21. [张学元, 马利民, 杜元龙, 曹殿珍. 应用化学, 1998, 15(6): 21]

    15. [15]

      [15]. Li. Y.; Zhao, P.; Liang, Q. Appl. Surf. Sci., 2005, 252(5): 1245

    16. [16]

      [16]. Tao, Z. H.; Li, W. H.; Zhang, S. T.; Hou, B. R. Corros. Prot., 2009, 30(6):364. [陶志华, 李伟华, 张胜涛, 侯保荣. 腐蚀与防护, 2009, 30(6): 364]

    17. [17]

      [17]. Bouklah, M.; Hammouti, B.; Lagrenee, M.; Bentiss, F. Corrosion Sci., 2006, 48: 2831

    18. [18]

      [18]. Bereket, G.; Hur, E. J. Mol. Struct. -Theochem, 2002, 578: 79

    19. [19]

      [19]. Zhang, S. G.; Lei, W.; Xia, M. Z.; Wang, F. Y. J. Mol. Struct. -Theochem, 2005, 732: 173

    20. [20]

      [20]. Hotop, H.; Lineberger, W. C. J. Phys. Chem. Ref. Data, 1985, 14: 731

    21. [21]

      [21]. Cruz, J.; Martinez-Aguileral, L. M. R.; Salcedo, R.; Castro, M. Int. J. Quantum Chem., 2001, 85: 546


  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    3. [3]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    4. [4]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    5. [5]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    6. [6]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    14. [14]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    15. [15]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    19. [19]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    20. [20]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

Metrics
  • PDF Downloads(1131)
  • Abstract views(2741)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return