Citation: DAI Ke-Hua, MAO Jing, ZHAI Yu-Chun. High Rate Capability of 5 V LiNi0.5Mn1.5O4 Cathode Materials Synthesized via a Gel-Combustion Method[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2130-2134. doi: 10.3866/PKU.WHXB20100808 shu

High Rate Capability of 5 V LiNi0.5Mn1.5O4 Cathode Materials Synthesized via a Gel-Combustion Method

  • Received Date: 21 January 2010
    Available Online: 10 June 2010

    Fund Project: 高等学校博士学科点专项科研基金(20090042120013) (20090042120013)沈阳市人才资源开发专项资金(2009010103040)资助项目 (2009010103040)

  • Sub-micron LiNi0.5Mn1.5O4 with excellent high rate performance was synthesized by a polyvinylpyrrolidone-assisted gel-combustion method. Thermogravimetric and differential thermal analyses (TG/DTA) were used to determine the nature of the combustion process of the gel. The structure and morphology of the as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and cyclic voltammetry (CV). The results showed that the LiNi0.5Mn1.5O4 powders were single-phase spinel and consisted of uniform secondary particles (5 μm), which were formed by small primary particles (500 nm). Galvanostatic charge-discharge tests indicated that the LiNi0.5Mn1.5O4 had an excellent rate capability and cyclic performance. When discharged at a rate of 0.5C, 1C, 4C, 8C,and 10C between 3.5 and 4.9 V, the discharge capacity is 131.9, 127.6, 123.4, 118.4, and 113.7 mAh·g-1, respectively. Upon long cycling under a high discharge rate of 10C, the capacity retentions after 100, 500, and 1000 cycles were 91.4%, 80.9%, and 73.5%, respectively.

  • 加载中
    1. [1]

      [1]. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Edit., 2008, 47: 2930

    2. [2]

      [2]. Zhong, Q. M.; Bonakdarpour, A.; Zhang, M. J.; Gao, Y.; Dahn, J. R. J. Electrochem. Soc., 1997, 144: 205

    3. [3]

      [3]. Amine, K.; Tukamoto, H.; Yasuda, H.; Fujita, Y. J. Power Sources, 1997, 68: 604

    4. [4]

      [4]. Ariyoshi, K.; Yamamoto, S.; Ohzuku, T. J. Power Sources, 2003, 119: 959

    5. [5]

      [5]. Patoux, S.; Daniel, L.; Bourbon, C.; Lignier, H.; Pagano, C.; Le Cras, F.; Jouanneau, S.; Martinet, S. J. Power Sources, 2009, 189: 344

    6. [6]

      [6]. Arrebola, J. C.; Caballero, A.; Cruz, M.; Hernán, L.; Morales, J.; Castell?仵n, E. R. Adv. Funct. Mater., 2006, 16: 1904

    7. [7]

      [7]. Talyosef, Y.; Markovsky, B.; Lavi, R.; Salitra, G.; Aurbach, D.; Kovacheva, D.; rova, M.; Zhecheva, E.; Stoyanova, R. J. Electrochem. Soc., 2007, 154: A682

    8. [8]

      [8]. Shaju, K. M.; Bruce, P. G. Dalton Trans., 2008: 5471

    9. [9]

      [9]. Du, G. D.; Nuli, Y. N.; Feng, Z. Z.; Wang, J. L.; Yang, J. Acta Phys. -Chim. Sin., 2008, 24:165. [杜国栋, 努丽燕娜, 冯真真, 王久林, 杨 军. 物理化学学报, 2008, 24: 165]

    10. [10]

      [10]. Kunduraci, M.; Amatucci, G. G. Electrochim. Acta, 2008, 53: 4193

    11. [11]

      [11]. Fan, W. F.; Liu, X. Q. Science & Technology in Chemical Industry, 2007, 15:52. [范未峰, 刘兴泉. 化工科技, 2007, 15: 52]

    12. [12]

      [12]. Idemoto, Y.; Narai, H.; Koura, N. J. Power Sources, 2003, 119: 125

    13. [13]

      [13]. Chen, Z. Y.; Zhu, H. L.; Ji, S.; Linkov, V.; Zhang, J. L.; Zhu, W. J. Power Sources, 2009, 189: 507

    14. [14]

      [14]. Sun, Q.; Li, X. H.; Wang, Z. X.; Ji, Y. Trans. Nonferrous Met. Soc. China, 2009, 19: 176

    15. [15]

      [15]. Wen, L.; Qi, L.; Xu, G. X. Electrochim. Acta, 2006, 51: 4388

    16. [16]

      [16]. Kim, J. H.; Myung, S. T.; Sun, Y. K. Electrochim. Acta, 2004, 49: 219

    17. [17]

      [17]. Wu, X. L.; Kim, S. B. J. Power Sources, 2002, 109: 53

    18. [18]

      [18]. Hwang, B. J.; Wu, Y. W.; Venkateswarlu, M.; Cheng, M. Y.; Santhanam, R. J. Power Sources, 2009, 193: 828

    19. [19]

      [19]. Yi, T. F.; Zhu, Y. R. Electrochim. Acta, 2008, 53: 3120

    20. [20]

      [20]. Liu, G. Q.; Wang, Y. J.; Qi, L.; Li, W.; Chen, H. Electrochim. Acta, 2005, 50: 1965

    21. [21]

      [21]. Yan, Q. X.; Wang, Z. X.; Wu, J.; Li, X. H.; Tan, Q. Y. J. Funct. Mater., 2009, 40:933. [颜群轩, 王志兴, 吴 晶, 李新海, 谭群英. 功能材料, 2009, 40: 933]

    22. [22]

      [22]. Myung, S. T.; Komaba, S.; Kumagai, N.; Yashiro, H.; Chung, H. T.; Cho, T. H. Electrochim. Acta, 2002, 47: 2543

    23. [23]

      [23]. Park, S. H.; Sun, Y. K. Electrochim. Acta, 2004, 50: 431

    24. [24]

      [24]. Lazarraga, M. G.; Pascual, L.; Gadjov, H.; Kovacheva, D.; Petrov, K.; Amarilla, J. M.; Rojas, R. M.; Martin-Luen , M. A.; Rojo, J. M. J. Mater. Chem., 2004, 14: 1640

    25. [25]

      [25]. Aklalouch, M.; Rojas, R. M.; Rojo, J. M.; Saadoune, I.; Amarilla, J. M. Electrochim. Acta, 2009, 54: 7542

    26. [26]

      [26]. Fan, W. F.; Qu, M. Z.; Peng, G. C.; Yu, Z. L. Chin. J. Inorg. Chem., 2009, 25:124. [范未峰, 瞿美臻, 彭工厂, 于作龙. 无机化学学报, 2009, 25: 124]

    27. [27]

      [27]. Zhao, Q. L.; Ye, N. Q.; Xi, Q. F.; Huang, Y. Z. Chin. Chem. Bull., 2009, 72(11):1045. [赵巧丽, 叶乃清, 喜全芳, 黄耀志. 化学通报, 2009, 72(11): 1045]

    28. [28]

      [28]. Amarilla, J. M.; Rojas, R. M.; Pico, F.; Pascual, L.; Petrov, K.; Kovacheva, D.; Lazarraga, M. G.; Lejona, I.; Rojo, J. M. J. Power Sources, 2007, 174: 1212

    29. [29]

      [29]. Caballero, A.; Cruz, M.; Hernan, L.; Melero, M.; Morales, J.; Castellon, E. R. J. Power Sources, 2005, 150: 192

    30. [30]

      [30]. Kovacheva, D.; Markovsky, B.; Salitra, G.; Talyosef, Y.; rova, M.; Levi, E.; Riboch, M.; Kim, H. J.; Aurbach, D. Electrochim. Acta, 2005, 50: 5553

    31. [31]

      [31]. Arrebola, J. C.; Caballero, A.; Hernan, L.; Morales, J. Electrochem. Solid-State Lett., 2005, 8: A641

    32. [32]

      [32]. Kunduraci, M.; Al-Sharab, J. F.; Amatucci, G. G. Chem. Mater., 2006, 18: 3585

    33. [33]

      [33]. Rho, Y. H.; Dokko, K.; Kanamura, K. J. Power Sources, 2006, 157: 471

    34. [34]

      [34]. Arrebola, J. C.; Caballero, A.; Hernan, L.; Morales, J. J. Power Sources, 2008, 180: 852

    35. [35]

      [35]. Takahashi, K.; Saitoh, M.; Sano, M.; Fujita, M.; Kifune, K. J. Electrochem. Soc., 2004, 151: A173

    36. [36]

      [36]. Ariyoshi, K.; Iwakoshi, Y.; Nakayama, N.; Ohzuku, T. J. Electrochem. Soc., 2004, 151: A296

    37. [37]

      [37]. Kim, J. H.; Myung, S. T.; Yoon, C. S.; Kang, S. G.; Sun, Y. K. Chem. Mater., 2004, 16: 906

    38. [38]

      [38]. Kunduraci, M.; Amatucci, G. G. J. Electrochem. Soc., 2006, 153: A1345

    39. [39]

      [39]. Kunduraci, M.; Amatucci, G. G. J. Power Sources, 2007, 165: 359


  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    14. [14]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    19. [19]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(1362)
  • Abstract views(2984)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return