Citation: XIAO Rong-Ping, KE Mei-Rong, HUANG Jian-Dong, ZHANG Han-Hui. Preparation and Spectroscopic Properties of Covalent Albumin Conjugates of Zinc Phthalocyanines Tetrasubstituted with Carboxyl Moieties[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2274-2280. doi: 10.3866/PKU.WHXB20100807 shu

Preparation and Spectroscopic Properties of Covalent Albumin Conjugates of Zinc Phthalocyanines Tetrasubstituted with Carboxyl Moieties

  • Received Date: 19 February 2010
    Available Online: 9 June 2010

    Fund Project: 国家自然科学基金(20872016) (20872016)福建省自然科学基金(C0710033) (C0710033)福建省高等学校新世纪优秀人才计划(XSJRC2007-18)资助项目 (XSJRC2007-18)

  • A series of covalently bound albumin (bovine serum albumin (BSA) and human serum albumin (HSA)) conjugates of phthalocyanines functionalized with carboxyls were prepared and resulted in amide bonds. The phthalocyanines are tetra-α-(4-carboxyl phenoxy) phthalocyanine zinc (1) and tetra-α-[4-(2-carboxyl-ethyl) phenoxy] phthalocyanine zinc (3) as well as their corresponding tetra-β-substituted counterparts (compounds 2 and 4). The spectroscopic properties of these phthalocyanines and their bioconjugates in phosphate buffer saline solution (PBS) were investigated. The phthalocyanines that are covalently bound to the albumins have a more obvious monomeric absorption characteristic than the corresponding free phthalocyanines. Moreover, the spectroscopic characteristics of the phthalocyanines in the bioconjugates are not affected by solution pH. The substitution position of the carboxyl moieties on the phthalocyanine ring has an effect on the spectroscopic transformation of these macromolecules after conjugation with the albumins. Substitution at the α-position of the phthalocyanine ring leads to more prominent spectroscopic changes than that at the β-position. Both 1-albumin and 3-albumin in PBS show monomeric phthalocyanine spectra with Q-band maxima at about 697 nm and 706 nm, respectively.

  • 加载中
    1. [1]

      [1]. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer, 2003, 3: 380

    2. [2]

      [2]. Huang, Z. Technol. Cancer Res. Treat., 2005, 4: 283

    3. [3]

      [3]. Detty, M. R.; Gibson, S. L.; Wagner, S. J. J. Med. Chem., 2004, 47 (16): 3897

    4. [4]

      [4]. Huang, J. L.; Huang, J. D.; Liu, E. S.; Chen, N. S. Acta Phys. -Chim. Sin., 2001, 17(7):662. [黄金陵, 黄剑东, 刘尔生, 陈耐生. 物理化学学报, 2001, 17(7): 662]

    5. [5]

      [5]. Yu, K. C.; Cheng, H.; Jin, L. Chinese Photograph. Sci. Photochem., 2003, 21(2):138. [俞开潮, 程 红, 金 玲. 感光科学与光化学, 2003, 21(2): 138]

    6. [6]

      [6]. Chen, H. W.; Chen, J. C.; Chen, N. S.; Huang, J. L.; Wang, J. D.; Huang, M. D. Prog. Biochem. Biophys., 2009, 36(9):1106. [陈宏炜, 陈锦灿, 陈耐生, 黄金陵, 王俊东, 黄明东. 生物化学与生物物理进展, 2009, 36(9): 1106]

    7. [7]

      [7]. Huang, J. L.; Chen, N. S.; Huang, J. D.; Xue, J. P.; Liu, E. S.; Yang, S. L. Sci. China Ser. B, 2001, 44(2): 113

    8. [8]

      [8]. Ke, M. R.; Huang, J. D.; Weng, S. M. J. Photochem. Photobiol., A, 2009, 201: 23

    9. [9]

      [9]. Stehle, G.; Wunder, A.; Schrenk, H. H.; Hartung, G.; Heene, D. L.; Sinn, H. Anti-Cancer Drug., 1999, 10: 785

    10. [10]

      [10]. Sharman, W. M.; van Lier, J. E.; Allen, C. M. Adv. Drug Rev., 2004, 56: 53

    11. [11]

      [11]. Lang, K.; Mosinger, J.; Wagnerova, D. M. Coord. Chem. Rev., 2004, 248: 321

    12. [12]

      [12]. Jiang, X. J.; Huang, J. D.; Zhu, Y. J.; Tang, F. X.; Ng, D. K. P.; Sun, J. C. Bioorg. Med. Chem. Lett., 2006, 16: 2450

    13. [13]

      [13]. Zhu, Y. J.; Huang, J. D.; Jiang, X. J.; Sun, J. C. Inorg. Chem. Commun., 2006, 9: 473

    14. [14]

      [14]. Huang, J. D.; Lo, P. C.; Chen, Y. M.; Lai, J. C.; Fong, W. P.; Ng, D. K. P. J. Inorg. Biochem., 2006, 100: 946

    15. [15]

      [15]. Lin, W.; Peng, Y. R.; Chen, K. Z.; Wen, J. B. Chin. J. Anal. Chem., 2006, 34(3):411. [林 伟, 彭亦如, 陈奎治, 翁家宝, 徐国兴. 分析化学, 2006, 34(3): 411]

    16. [16]

      [16]. Alarcón, E.; Edwards, A. M.; Garcia, A. M.; Mu?觡oz, M.; Aspée, A.; Borsarelli, C. D.; Lissi, E. A. Photochem. Photobiol. Sci., 2009, 8 (2): 255

    17. [17]

      [17]. Wen, J. K.; Han, M. Medicinal molecular biology: theory and study technique. Beijing: Science Press, 1999:219. [温进坤, 韩 梅. 医学分子生物学: 理论与研究技术. 北京: 科学出版社, 1999: 219]

    18. [18]

      [18]. Wei, J.; Huang, J. L. Macromolecules, 2005, 38: 1107

    19. [19]

      [19]. Lu, X. Q.; Shi, H. Y.; Wang, M. H. Chin. J. Immunol., 2009, 25 (3):346. [卢希勤, 施海燕, 王鸣华. 免疫学杂志, 2009, 25(3): 346]

    20. [20]

      [20]. Liu, T.; Zhang, G. F.; Zhou, W. B.; Su, Z. G. Chin. J. Anal. Chem., 2007, 35(1):43. [刘 涛, 张贵锋, 周卫斌, 苏志国. 分析化学, 2007, 35(1): 43]

    21. [21]

      [21]. Mao, W. X.; Su, Y.; Tang, J. W. Chin. J. Org. Chem., 2006, 26 (5):707. [毛文学, 苏 勇, 唐经武. 有机化学, 2006, 26(5): 707]

    22. [22]

      [22]. Li, X. Y.; He, X.; Ng, A.C. H.; Wu, C.; Ng, D. K. P. Macromolecules, 2000, 33: 2119

    23. [23]

      [23]. Liu, W.; Jensen, T. J.; Fronczek, F. R.; Hammer, R. P.; Smith, K. M.; Vicente, M. G. H. J. Med. Chem., 2005, 48: 1033

    24. [24]

      [24]. Jori, G. J. Photochem. Photobiol. A, 1992, 62: 371

    25. [25]

      [25]. Ng, D. K. P. C. R. Chimie, 2003, 6: 903

    26. [26]

      [26]. Huang, J. D.; Liu, E. S.; Yang, S. L.; Xue, J. P.; Chen, N. S.; Huang, J. L. Chem. J. Chin. Univ., 2002, 23(12):2287. [黄剑东, 刘尔生, 杨素苓, 薛金萍, 陈耐生, 黄金陵. 高等学校化学学报, 2002, 23(12): 2287]


  • 加载中
    1. [1]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    2. [2]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    3. [3]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    4. [4]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    5. [5]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    6. [6]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    7. [7]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    11. [11]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    14. [14]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    19. [19]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    20. [20]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

Metrics
  • PDF Downloads(1199)
  • Abstract views(2793)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return