Citation:
XIAO Rong-Ping, KE Mei-Rong, HUANG Jian-Dong, ZHANG Han-Hui. Preparation and Spectroscopic Properties of Covalent Albumin Conjugates of Zinc Phthalocyanines Tetrasubstituted with Carboxyl Moieties[J]. Acta Physico-Chimica Sinica,
;2010, 26(08): 2274-2280.
doi:
10.3866/PKU.WHXB20100807
-
A series of covalently bound albumin (bovine serum albumin (BSA) and human serum albumin (HSA)) conjugates of phthalocyanines functionalized with carboxyls were prepared and resulted in amide bonds. The phthalocyanines are tetra-α-(4-carboxyl phenoxy) phthalocyanine zinc (1) and tetra-α-[4-(2-carboxyl-ethyl) phenoxy] phthalocyanine zinc (3) as well as their corresponding tetra-β-substituted counterparts (compounds 2 and 4). The spectroscopic properties of these phthalocyanines and their bioconjugates in phosphate buffer saline solution (PBS) were investigated. The phthalocyanines that are covalently bound to the albumins have a more obvious monomeric absorption characteristic than the corresponding free phthalocyanines. Moreover, the spectroscopic characteristics of the phthalocyanines in the bioconjugates are not affected by solution pH. The substitution position of the carboxyl moieties on the phthalocyanine ring has an effect on the spectroscopic transformation of these macromolecules after conjugation with the albumins. Substitution at the α-position of the phthalocyanine ring leads to more prominent spectroscopic changes than that at the β-position. Both 1-albumin and 3-albumin in PBS show monomeric phthalocyanine spectra with Q-band maxima at about 697 nm and 706 nm, respectively.
-
-
-
[1]
[1]. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer, 2003, 3: 380
-
[2]
[2]. Huang, Z. Technol. Cancer Res. Treat., 2005, 4: 283
-
[3]
[3]. Detty, M. R.; Gibson, S. L.; Wagner, S. J. J. Med. Chem., 2004, 47 (16): 3897
-
[4]
[4]. Huang, J. L.; Huang, J. D.; Liu, E. S.; Chen, N. S. Acta Phys. -Chim. Sin., 2001, 17(7):662. [黄金陵, 黄剑东, 刘尔生, 陈耐生. 物理化学学报, 2001, 17(7): 662]
-
[5]
[5]. Yu, K. C.; Cheng, H.; Jin, L. Chinese Photograph. Sci. Photochem., 2003, 21(2):138. [俞开潮, 程 红, 金 玲. 感光科学与光化学, 2003, 21(2): 138]
-
[6]
[6]. Chen, H. W.; Chen, J. C.; Chen, N. S.; Huang, J. L.; Wang, J. D.; Huang, M. D. Prog. Biochem. Biophys., 2009, 36(9):1106. [陈宏炜, 陈锦灿, 陈耐生, 黄金陵, 王俊东, 黄明东. 生物化学与生物物理进展, 2009, 36(9): 1106]
-
[7]
[7]. Huang, J. L.; Chen, N. S.; Huang, J. D.; Xue, J. P.; Liu, E. S.; Yang, S. L. Sci. China Ser. B, 2001, 44(2): 113
-
[8]
[8]. Ke, M. R.; Huang, J. D.; Weng, S. M. J. Photochem. Photobiol., A, 2009, 201: 23
-
[9]
[9]. Stehle, G.; Wunder, A.; Schrenk, H. H.; Hartung, G.; Heene, D. L.; Sinn, H. Anti-Cancer Drug., 1999, 10: 785
-
[10]
[10]. Sharman, W. M.; van Lier, J. E.; Allen, C. M. Adv. Drug Rev., 2004, 56: 53
-
[11]
[11]. Lang, K.; Mosinger, J.; Wagnerova, D. M. Coord. Chem. Rev., 2004, 248: 321
-
[12]
[12]. Jiang, X. J.; Huang, J. D.; Zhu, Y. J.; Tang, F. X.; Ng, D. K. P.; Sun, J. C. Bioorg. Med. Chem. Lett., 2006, 16: 2450
-
[13]
[13]. Zhu, Y. J.; Huang, J. D.; Jiang, X. J.; Sun, J. C. Inorg. Chem. Commun., 2006, 9: 473
-
[14]
[14]. Huang, J. D.; Lo, P. C.; Chen, Y. M.; Lai, J. C.; Fong, W. P.; Ng, D. K. P. J. Inorg. Biochem., 2006, 100: 946
-
[15]
[15]. Lin, W.; Peng, Y. R.; Chen, K. Z.; Wen, J. B. Chin. J. Anal. Chem., 2006, 34(3):411. [林 伟, 彭亦如, 陈奎治, 翁家宝, 徐国兴. 分析化学, 2006, 34(3): 411]
-
[16]
[16]. Alarcón, E.; Edwards, A. M.; Garcia, A. M.; Mu?觡oz, M.; Aspée, A.; Borsarelli, C. D.; Lissi, E. A. Photochem. Photobiol. Sci., 2009, 8 (2): 255
-
[17]
[17]. Wen, J. K.; Han, M. Medicinal molecular biology: theory and study technique. Beijing: Science Press, 1999:219. [温进坤, 韩 梅. 医学分子生物学: 理论与研究技术. 北京: 科学出版社, 1999: 219]
-
[18]
[18]. Wei, J.; Huang, J. L. Macromolecules, 2005, 38: 1107
-
[19]
[19]. Lu, X. Q.; Shi, H. Y.; Wang, M. H. Chin. J. Immunol., 2009, 25 (3):346. [卢希勤, 施海燕, 王鸣华. 免疫学杂志, 2009, 25(3): 346]
-
[20]
[20]. Liu, T.; Zhang, G. F.; Zhou, W. B.; Su, Z. G. Chin. J. Anal. Chem., 2007, 35(1):43. [刘 涛, 张贵锋, 周卫斌, 苏志国. 分析化学, 2007, 35(1): 43]
-
[21]
[21]. Mao, W. X.; Su, Y.; Tang, J. W. Chin. J. Org. Chem., 2006, 26 (5):707. [毛文学, 苏 勇, 唐经武. 有机化学, 2006, 26(5): 707]
-
[22]
[22]. Li, X. Y.; He, X.; Ng, A.C. H.; Wu, C.; Ng, D. K. P. Macromolecules, 2000, 33: 2119
-
[23]
[23]. Liu, W.; Jensen, T. J.; Fronczek, F. R.; Hammer, R. P.; Smith, K. M.; Vicente, M. G. H. J. Med. Chem., 2005, 48: 1033
-
[24]
[24]. Jori, G. J. Photochem. Photobiol. A, 1992, 62: 371
-
[25]
[25]. Ng, D. K. P. C. R. Chimie, 2003, 6: 903
-
[26]
[26]. Huang, J. D.; Liu, E. S.; Yang, S. L.; Xue, J. P.; Chen, N. S.; Huang, J. L. Chem. J. Chin. Univ., 2002, 23(12):2287. [黄剑东, 刘尔生, 杨素苓, 薛金萍, 陈耐生, 黄金陵. 高等学校化学学报, 2002, 23(12): 2287]
-
[1]
-
-
-
[1]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[2]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[3]
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
-
[4]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[5]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[6]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[7]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[8]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[9]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[10]
Jin Yan , Chengxia Tong , Yajie Li , Yue Gu , Xuejian Qu , Shigang Wei , Wanchun Zhu , Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008
-
[11]
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
-
[12]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[13]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[14]
Jia Zhou . Design and Practice of a Comprehensive Computational Chemistry Experiment Based on High-Throughput Computation and Machine Learning. University Chemistry, 2025, 40(9): 69-75. doi: 10.12461/PKU.DXHX202411067
-
[15]
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
-
[16]
Yueshuai Xu , Wei Liu , Xudong Chen , Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045
-
[17]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[18]
Yihong Shao , Rongchen Shen , Song Wang , Shijie Li , Peng Zhang , Xin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176
-
[19]
Chengxiao Zhao , Zhaolin Li , Dongfang Wu , Xiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149
-
[20]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[1]
Metrics
- PDF Downloads(1199)
- Abstract views(2933)
- HTML views(22)
Login In
DownLoad: