Citation: XU Jia-Xin, JIANG Yan-Xia, LIAO Hong-Gang, CHEN Sheng-Pei, SUN Shi-Gang. Room Temperature Synthesis of Thorn-Like Pd Nanoparticles and Their Enhanced Electrocatalytic Property for Ethanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2139-2143. doi: 10.3866/PKU.WHXB20100804 shu

Room Temperature Synthesis of Thorn-Like Pd Nanoparticles and Their Enhanced Electrocatalytic Property for Ethanol Oxidation

  • Received Date: 10 February 2010
    Available Online: 28 May 2010

    Fund Project: 国家自然科学基金(20833005, 20873116, 60936003) (20833005, 20873116, 60936003)超分子结构和材料国家重点实验室(SKLSSM200910)资助项目 (SKLSSM200910)

  • Thorn-like Pd nanoparticles (Pdnthorn000) were synthesized at room temperature by a reduction of PdCl2 with L-ascorbic acid and with choline chloride as a stabilizer. Characterization of Pdthornn000 by transmission electron microscopy and cyclic voltammetry indicated that the synthesized Pdthornn000 has a relatively high density of surface step sites. By comparison with the commercially available Pd black catalyst, Pndthorn000 exhibits better catalytic activity towards ethanol oxidation. The oxidation current density on Pdnthorn000 was 1.2 times (-0.40 - -0.30 V) - 1.5 times (-0.65 - -0.40 V) as that on Pd black, and the onset potential and the peak potential of ethanol oxidation both shifted 50 mV in the negative direction. The oxidation potential of ethanol on Pdthornn000 is lower at the same current density.

  • 加载中
    1. [1]

      [1]. Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; Penner, R. M. Science, 2001, 293: 2227

    2. [2]

      [2]. Deab, M. S.; Ohsaka, T. Electrochem. Commun., 2002, 4: 288

    3. [3]

      [3]. Finot, M. O.; Braybrook, G. D.; McDermott, M. T. J. Electroanal. Chem., 1999, 466: 234

    4. [4]

      [4]. Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. J. Phys. Chem. B, 2006, 110: 13393

    5. [5]

      [5]. Gandhi, H. S.; Graham, G. W.; McCabe, R. W. J. Catal., 2003, 216: 433

    6. [6]

      [6]. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science, 2007, 316: 732

    7. [7]

      [7]. Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Yin, Y. D.; Li, Z. Y. Nano Lett., 2005, 5: 1237

    8. [8]

      [8]. Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Aloni, N. S.; Yin, Y. D. J. Am. Chem. Soc., 2005, 127: 7332

    9. [9]

      [9]. Xiong, Y. J.; McLellan, J. M.; Yin, Y. D.; Xia, Y. N. Angew. Chem. Int. Edit., 2007, 46: 790

    10. [10]

      [10]. Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. N. J. Am. Chem. Soc., 2005, 127: 17118

    11. [11]

      [11]. Liao, H. G. Electrocatalytic properties and shape-controlled synthesis of metal nanoparticles in room temperature ionic liquids and deep eutectic solvents [D]. Xiamen: Xiamen University, 2009 [廖洪钢. 室温离子液体及低温共融物中金属纳米粒子催化剂的形状控制合成及其电催化性能研究[D]. 厦门: 厦门大学, 2009]

    12. [12]

      [12]. Fan, F. R.; Attia, A.; Sur, U. K.; Chen, J. B.; Xie, Z. X.; Li, J. F.; Ren, B.; Tian, Z. Q. Crystal Growth & Design, 2009, 9: 2335

    13. [13]

      [13]. Xiong, Y. J.; Xia, Y. N. Adv. Mater., 2007, 19: 3385

    14. [14]

      [14]. Rand, D. A. J.; Woods, R. J. Electroanal. Chem., 1971, 31: 29

    15. [15]

      [15]. Cai, L. R.; Sun, S. G.; Xia, S. Q.; Chen, F.; Zheng, M. S.; Chen, S. P.; Lu, G. Q. Acta Phys. -Chim. Sin., 1999, 15:1023. [蔡丽蓉, 孙世刚, 夏盛清, 陈 芳, 郑明森, 陈声陪, 卢国强. 物理化学学报, 1999, 15: 1023]

    16. [16]

      [16]. Hoshi, N.; Nakamura, M.; Maki, N. J. Electroanal. Chem., 2008, 624: 134

    17. [17]

      [17]. Tian, N.; Zhou, Z. Y.; Sun, S. G. Chem. Commun., 2009: 1502


  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    9. [9]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    13. [13]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

Metrics
  • PDF Downloads(1377)
  • Abstract views(2822)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return