Citation: YUAN Peng, LIU Zhong-Yi, SUN Hai-Jie, LIU Shou-Chang. Influence of Calcination Temperature on the Performance of Cu-Al-Ba Catalyst for Hydrogenation of Esters to Alcohols[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2235-2241. doi: 10.3866/PKU.WHXB20100642 shu

Influence of Calcination Temperature on the Performance of Cu-Al-Ba Catalyst for Hydrogenation of Esters to Alcohols

  • Received Date: 11 January 2010
    Available Online: 13 May 2010

  • Novel chromium-free Cu-Al-Ba catalysts were prepared by co-precipitation and were calcined at different temperatures. Their performance during the hydrogenation of palm oil esters to higher alcohols was evaluated in an autoclave. Results showed that the catalytic properties of the catalysts were greatly influenced by the calcination temperatures. The yield of higher alcohols showed three steps when the calcination temperature of the catalysts was raised from 150 to 750 ℃. The thermogravimetric (TG-DTG) curves of the precursor also exhibited three steps related to mass loss. X-ray power diffraction (XRD), X-ray fluorescence (XRF), transmission electron microscopy-energy dispersive spectrometry-selected area electron diffraction (TEM-EDS-SAED), N2-physisorption, and temperature- programmed reduction (TPR) characterization revealed that the catalysts were obtained from a malachite-boehmite-BaCO3 precursor. After calcination at 300 or 550 ℃, the catalysts were found to be composed of crystalline CuO and BaCO3 as well as amorphous Al2O3. Amorphous Al2O3 has a large surface area which results in a high dispersion of CuO. Rod-like BaCO3 helps in the provision of micropores. The formation of BaAl2O4 at a calcination temperature of 750 ℃ destroys the amorphous structure and causes a sharp decline in the surface area and pore volume of the catalyst and this causes CuO aggregation. An optimal higher alcohol yield of 92.3% was obtained over the Cu-Al-Ba catalyst that was calcined at 550 ℃ due to its larger surface area, larger pore volume, and higher degree of CuO dispersion.

  • 加载中
    1. [1]

      [1]. Hark, S. V. D.; Harrod, M.; MΦller, P. JAOCS, 1999, 76(11): 1363

    2. [2]

      [2]. Peters, R. A. Economics of a world scale fatty alcohol business.// Applewhite, T. H. Proceedings World Conference on Oleochemicals into the 21st Century, Champaign: American Oil Chemists′ Society, 1991: 181-188

    3. [3]

      [3]. Echeverri, D. A.; Marín, J. M.; Restrepo, G. M.; Rios, L. A. Appl. Catal. A-Gen., 2009, 366: 342

    4. [4]

      [4]. Pérez-Cadenas, A. F.; Kapteijn, F.; Zieverink, M. M. P.; Moulijn, J. A. Catal. Today, 2007, 128: 13

    5. [5]

      [5]. Nikolaou, N.; Papadopoulos, C. E.; Lazaridou, A.; Koutsoumba, A.; Bouriazos, A.; Papadogianakis, G. Catal. Commun., 2009, 10: 451

    6. [6]

      [6]. Rieke, R. D.; Thakur, D. S.; Roberts, B. D.; White, G. T. JAOCS, 1997, 74(4): 333

    7. [7]

      [7]. Luo, G.; Yan, S.; Qiao, M.; Fan, K. Appl. Catal. A-Gen., 2007, 332: 79

    8. [8]

      [8]. Nomura, K.; Ogura, H.; Imanishi, Y. J. Mol. Catal. A-Chem., 2002, 178: 105

    9. [9]

      [9]. Figueiredo, F. C. A.; Jordao, E.; Carvalho, W. A. Appl. Catal. A- Gen., 2008, 351: 259

    10. [10]

      [10]. Miyake, T.; Makino, T.; Taniguchi, S.; Watanuki, H.; Niki, T.; Shimizu, S.; Kojima, Y.; Sano, M. Appl. Catal. A-Gen., 2009, 364: 108

    11. [11]

      [11]. Brands, D. S.; Poels, E. K.; Bliek, A. Appl. Catal. A-Gen., 1999, 184: 279

    12. [12]

      [12]. Corbos, E. C.; Courtois, X.; Bion, N.; Marecot, P.; Duprez, D. Appl. Catal. B-Environ., 2008, 80: 62

    13. [13]

      [13]. Xiao, J.; Li, X.; Deng, S.; Wang, F.; Wang, L. Catal. Commun., 2008, 9: 563

    14. [14]

      [14]. Lindholm, A.; Currier, N. W.; Dawody, J.; Hidayat, A.; Li, J.; Yezerets, A.; Olsson, L. Appl. Catal. B-Environ., 2009, 88: 240

    15. [15]

      [15]. Yuan, P.; Zhu, W.; Liu, S. Flav. Frag. Cosm., 2007, 4: 19

    16. [16]

      [16]. Paquot, C.; Hautfenne, A. Standard methods for the analysis of oils, fats and derivatives. 7th Revised and Enlarged Edition, Oxford: Blackwell Scientific Publications Ltd., 1987: 73-116

    17. [17]

      [17]. Szailer, T.; Kwak, J. H.; Kim, D. H.; Szanyi, J.; Wang, C.; Peden, C. H. F. Catal. Today, 2006, 114: 86

    18. [18]

      [18]. Li, J.; Pan, Y.; Xiang, C.; Ge, Q.; Guo, J. Ceram. Inter., 2006, 32: 587

    19. [19]

      [19]. Kumari, V. D.; Subrahmanyam, M.; Ratnamala, A.; Venu pal, D.; Srinivas, B.; Phanikrishna Sharma, M. V.; Madhavendra, S. S.; Bikshapathi, B.; Venkateswarlu, K.; Krishnudu, T.; Prasad, K. B. S.; Raghavan, K. V. Catal. Commun., 2002, 3: 417

    20. [20]

      [20]. Chen, L.; Shen, Y.; Xie, A.; Zhu, J.; Wu, Z.; Yang, L. Cryst. Res. Technol., 2007, 42(9): 886

    21. [21]

      [21]. Lefèvre, G.; Duc, M.; Lepeut, P.; Caplain, R.; Fédoroff, M. Langmuir, 2002, 18: 7530

    22. [22]

      [22]. Koga, N.; Fukagawa, T.; Tanaka, H. J. Therm. Anal. Calor., 2001, 64: 965

    23. [23]

      [23]. Huang, H.; Cao, G.; Fan, C.; Wang, S.; Wang, S. Korean J. Chem. Eng., 2009, 26(6): 1574

    24. [24]

      [24]. Waugh, K. C. Catal. Today, 1992, 15: 51

    25. [25]

      [25]. Rasmussen, P. B.; Kazuta, M.; Chorkendorff, I. Surf. Sci., 1994, 318: 267

    26. [26]

      [26]. Yoshihara, J.; Parker, S.; Schafer, A.; Campbell, C. T. Catal. Lett., 1995, 31: 313

    27. [27]

      [27]. Chinchen, G. C.; Denny, P. J.; Jennings, J. R.; Spencer, M. S.; Waugh, K. C. Appl. Catal., 1988, 36: 1

    28. [28]

      [28]. Busca, G.; Costantino, U.; Marmottini, F.; Montanari, T.; Patrono, P.; Pinzari, F.; Ramis, G. Appl. Catal. A-Gen., 2006, 310: 70

    29. [29]

      [29]. Porta, P.; Campa, M. C.; Fierro, G.; Lo Jacono, M.; Minelli, G.; Moretti, G.; Stoppa, L. J. Mater. Chem., 1993, 3: 505

    30. [30]

      [30]. Bart, J. C. J.; Sneeden, R. P. A. Catal. Today, 1987, 2: 1

    31. [31]

      [31]. Chinchen, G. C.; Mansfield, K.; Spencer, M. S. Chemtech, 1990, 20(11): 692

    32. [32]

      [32]. Guo, P. J.; Chen, L. F.; Yan, S. R.; Dai, W. L.; Qiao, M. H.; Xu, H. L.; Fan, K. N. J. Mol. Catal. A-Chem., 2006, 256: 164

    33. [33]

      [33]. Chen, L. F.; Guo, P. J.; Zhu, L. J.; Qiao, M. H.; Shen, W.; Xu, H. L.; Fan, K. N. Appl. Catal. A-Gen., 2009, 356: 129

    34. [34]

      [34]. Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Shen, W.; Xu, H. L.; Fan, K. N. J. Catal., 2008, 257(1): 172


  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    4. [4]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    10. [10]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    20. [20]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

Metrics
  • PDF Downloads(1214)
  • Abstract views(3149)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return