Citation: YUAN Peng, LIU Zhong-Yi, SUN Hai-Jie, LIU Shou-Chang. Influence of Calcination Temperature on the Performance of Cu-Al-Ba Catalyst for Hydrogenation of Esters to Alcohols[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2235-2241. doi: 10.3866/PKU.WHXB20100642 shu

Influence of Calcination Temperature on the Performance of Cu-Al-Ba Catalyst for Hydrogenation of Esters to Alcohols

  • Received Date: 11 January 2010
    Available Online: 13 May 2010

  • Novel chromium-free Cu-Al-Ba catalysts were prepared by co-precipitation and were calcined at different temperatures. Their performance during the hydrogenation of palm oil esters to higher alcohols was evaluated in an autoclave. Results showed that the catalytic properties of the catalysts were greatly influenced by the calcination temperatures. The yield of higher alcohols showed three steps when the calcination temperature of the catalysts was raised from 150 to 750 ℃. The thermogravimetric (TG-DTG) curves of the precursor also exhibited three steps related to mass loss. X-ray power diffraction (XRD), X-ray fluorescence (XRF), transmission electron microscopy-energy dispersive spectrometry-selected area electron diffraction (TEM-EDS-SAED), N2-physisorption, and temperature- programmed reduction (TPR) characterization revealed that the catalysts were obtained from a malachite-boehmite-BaCO3 precursor. After calcination at 300 or 550 ℃, the catalysts were found to be composed of crystalline CuO and BaCO3 as well as amorphous Al2O3. Amorphous Al2O3 has a large surface area which results in a high dispersion of CuO. Rod-like BaCO3 helps in the provision of micropores. The formation of BaAl2O4 at a calcination temperature of 750 ℃ destroys the amorphous structure and causes a sharp decline in the surface area and pore volume of the catalyst and this causes CuO aggregation. An optimal higher alcohol yield of 92.3% was obtained over the Cu-Al-Ba catalyst that was calcined at 550 ℃ due to its larger surface area, larger pore volume, and higher degree of CuO dispersion.

  • 加载中
    1. [1]

      [1]. Hark, S. V. D.; Harrod, M.; MΦller, P. JAOCS, 1999, 76(11): 1363

    2. [2]

      [2]. Peters, R. A. Economics of a world scale fatty alcohol business.// Applewhite, T. H. Proceedings World Conference on Oleochemicals into the 21st Century, Champaign: American Oil Chemists′ Society, 1991: 181-188

    3. [3]

      [3]. Echeverri, D. A.; Marín, J. M.; Restrepo, G. M.; Rios, L. A. Appl. Catal. A-Gen., 2009, 366: 342

    4. [4]

      [4]. Pérez-Cadenas, A. F.; Kapteijn, F.; Zieverink, M. M. P.; Moulijn, J. A. Catal. Today, 2007, 128: 13

    5. [5]

      [5]. Nikolaou, N.; Papadopoulos, C. E.; Lazaridou, A.; Koutsoumba, A.; Bouriazos, A.; Papadogianakis, G. Catal. Commun., 2009, 10: 451

    6. [6]

      [6]. Rieke, R. D.; Thakur, D. S.; Roberts, B. D.; White, G. T. JAOCS, 1997, 74(4): 333

    7. [7]

      [7]. Luo, G.; Yan, S.; Qiao, M.; Fan, K. Appl. Catal. A-Gen., 2007, 332: 79

    8. [8]

      [8]. Nomura, K.; Ogura, H.; Imanishi, Y. J. Mol. Catal. A-Chem., 2002, 178: 105

    9. [9]

      [9]. Figueiredo, F. C. A.; Jordao, E.; Carvalho, W. A. Appl. Catal. A- Gen., 2008, 351: 259

    10. [10]

      [10]. Miyake, T.; Makino, T.; Taniguchi, S.; Watanuki, H.; Niki, T.; Shimizu, S.; Kojima, Y.; Sano, M. Appl. Catal. A-Gen., 2009, 364: 108

    11. [11]

      [11]. Brands, D. S.; Poels, E. K.; Bliek, A. Appl. Catal. A-Gen., 1999, 184: 279

    12. [12]

      [12]. Corbos, E. C.; Courtois, X.; Bion, N.; Marecot, P.; Duprez, D. Appl. Catal. B-Environ., 2008, 80: 62

    13. [13]

      [13]. Xiao, J.; Li, X.; Deng, S.; Wang, F.; Wang, L. Catal. Commun., 2008, 9: 563

    14. [14]

      [14]. Lindholm, A.; Currier, N. W.; Dawody, J.; Hidayat, A.; Li, J.; Yezerets, A.; Olsson, L. Appl. Catal. B-Environ., 2009, 88: 240

    15. [15]

      [15]. Yuan, P.; Zhu, W.; Liu, S. Flav. Frag. Cosm., 2007, 4: 19

    16. [16]

      [16]. Paquot, C.; Hautfenne, A. Standard methods for the analysis of oils, fats and derivatives. 7th Revised and Enlarged Edition, Oxford: Blackwell Scientific Publications Ltd., 1987: 73-116

    17. [17]

      [17]. Szailer, T.; Kwak, J. H.; Kim, D. H.; Szanyi, J.; Wang, C.; Peden, C. H. F. Catal. Today, 2006, 114: 86

    18. [18]

      [18]. Li, J.; Pan, Y.; Xiang, C.; Ge, Q.; Guo, J. Ceram. Inter., 2006, 32: 587

    19. [19]

      [19]. Kumari, V. D.; Subrahmanyam, M.; Ratnamala, A.; Venu pal, D.; Srinivas, B.; Phanikrishna Sharma, M. V.; Madhavendra, S. S.; Bikshapathi, B.; Venkateswarlu, K.; Krishnudu, T.; Prasad, K. B. S.; Raghavan, K. V. Catal. Commun., 2002, 3: 417

    20. [20]

      [20]. Chen, L.; Shen, Y.; Xie, A.; Zhu, J.; Wu, Z.; Yang, L. Cryst. Res. Technol., 2007, 42(9): 886

    21. [21]

      [21]. Lefèvre, G.; Duc, M.; Lepeut, P.; Caplain, R.; Fédoroff, M. Langmuir, 2002, 18: 7530

    22. [22]

      [22]. Koga, N.; Fukagawa, T.; Tanaka, H. J. Therm. Anal. Calor., 2001, 64: 965

    23. [23]

      [23]. Huang, H.; Cao, G.; Fan, C.; Wang, S.; Wang, S. Korean J. Chem. Eng., 2009, 26(6): 1574

    24. [24]

      [24]. Waugh, K. C. Catal. Today, 1992, 15: 51

    25. [25]

      [25]. Rasmussen, P. B.; Kazuta, M.; Chorkendorff, I. Surf. Sci., 1994, 318: 267

    26. [26]

      [26]. Yoshihara, J.; Parker, S.; Schafer, A.; Campbell, C. T. Catal. Lett., 1995, 31: 313

    27. [27]

      [27]. Chinchen, G. C.; Denny, P. J.; Jennings, J. R.; Spencer, M. S.; Waugh, K. C. Appl. Catal., 1988, 36: 1

    28. [28]

      [28]. Busca, G.; Costantino, U.; Marmottini, F.; Montanari, T.; Patrono, P.; Pinzari, F.; Ramis, G. Appl. Catal. A-Gen., 2006, 310: 70

    29. [29]

      [29]. Porta, P.; Campa, M. C.; Fierro, G.; Lo Jacono, M.; Minelli, G.; Moretti, G.; Stoppa, L. J. Mater. Chem., 1993, 3: 505

    30. [30]

      [30]. Bart, J. C. J.; Sneeden, R. P. A. Catal. Today, 1987, 2: 1

    31. [31]

      [31]. Chinchen, G. C.; Mansfield, K.; Spencer, M. S. Chemtech, 1990, 20(11): 692

    32. [32]

      [32]. Guo, P. J.; Chen, L. F.; Yan, S. R.; Dai, W. L.; Qiao, M. H.; Xu, H. L.; Fan, K. N. J. Mol. Catal. A-Chem., 2006, 256: 164

    33. [33]

      [33]. Chen, L. F.; Guo, P. J.; Zhu, L. J.; Qiao, M. H.; Shen, W.; Xu, H. L.; Fan, K. N. Appl. Catal. A-Gen., 2009, 356: 129

    34. [34]

      [34]. Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Shen, W.; Xu, H. L.; Fan, K. N. J. Catal., 2008, 257(1): 172


  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    9. [9]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(1214)
  • Abstract views(3086)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return