Citation: SONG Hua, DONG Peng-Fei, ZHANG Xu. Effect of Al Content on the n-Pentane Isomerization of the Solid Superacid Pt-SO2-4 /ZrO2-Al2O3[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2229-2234. doi: 10.3866/PKU.WHXB20100640 shu

Effect of Al Content on the n-Pentane Isomerization of the Solid Superacid Pt-SO2-4 /ZrO2-Al2O3

  • Received Date: 23 December 2009
    Available Online: 13 May 2010

    Fund Project: 中国石油天然气股份有限公司科技风险创新基金(07-06D-01-04-03-02)资助项目 (07-06D-01-04-03-02)

  • Highly active and stable Pt-SO2-4 /ZrO2-Al2O3 solid superacid catalysts were prepared by simultaneously introducing appropriate amounts of Pt and Al2O3 into a SO2-4 /ZrO2 catalyst. The effect of Al content on the performance of the catalysts was studied using n-pentane isomerization as a probe reaction and the catalysts were characterized by X-ray diffraction (XRD), specific surface area measurements (BET), infrared (IR) spectroscopy, temperature-programmed reduction (TPR), thermogravimetry-differential thermal analysis (TG-DTA), and NH3 temperature-programmed desorption (NH3-TPD). The results show that Al can increase the crystallization temperature of ZrO2 and inhibit the decomposition of sulfur. Al can also increase the surface area of the catalyst, strengthen the combination between S and O, improve the redox performance of the catalyst and increase the acid strength and the acidity of the catalyst. The catalytic activity of the Pt-SO2-4 /ZrO2-Al2O3 solid superacid catalyst with a Al2O3 mass fraction of 5.0% was found to be the best. The isopentane yield was stable above 52.0% and the selectivity was higher than 98.2% within 100 h.

  • 加载中
    1. [1]

      [1]. Jin, T. S.; Yang, M. N.; Feng, G. L.; Li, T. S. Chin. J. Org. Chem., 2003, 23:1438. [靳通收, 杨米娜, 冯国良, 李同双. 有机化学, 2003, 23: 1438]

    2. [2]

      [2]. Reddy, B. M.; Sreekanth, P. M.; Lakshmanan, A. J. Mol. Catal. A- Chem., 2005, 237: 93.

    3. [3]

      [3]. Akira, N.; Hiromi, O.; Yoshikazu, K.; Kiyoshi, O. Catal. Commun., 2005, 6 : 716

    4. [4]

      [4]. Gao, Z.; Hua, W. M.; Chen, J. M.; Tang, Y. Acta Phys. -Chim. Sin., 1994, 10:897. [高 滋, 华伟明, 陈建民, 唐 颐. 物理化学学报, 1994, 10: 897]

    5. [5]

      [5]. Pan, H. H.; He, M. Y. Chin. J. Catal., 2005, 26:1067. [潘晖华, 何鸣元. 催化学报, 2005, 26: 1067]

    6. [6]

      [6]. Yao, R. P.; Zhang, M. J.; Yang, J.; Yi, D. L.; Xu, J.; Deng, F.; Yue, Y.; Ye, C. H. Acta Chim. Sin., 2005, 63:269. [姚瑞平, 张铭金, 杨 俊, 易德莲, 徐 君, 邓 风, 岳 勇, 叶朝辉. 化学学报, 2005, 63: 269]

    7. [7]

      [7]. Jin, T.; Yamaguchi, T.; Tanabe, K. J. Phys. Chem., 1986, 90: 4794

    8. [8]

      [8]. Vijay, S.; Wolf, E. E.; Miller, J. T.; Kropf, A. J. Appl. Catal. A, 2004, 264: 125

    9. [9]

      [9]. Strohmeier, B. R.; Levden, D. E.; Hercules, D. M. J. Catal., 1985, 94: 514

    10. [10]

      [10]. Abrahams, I.; Bush, A. J.; Chan, S. C. M. Krok, F.; Wrobel, W. J. Mater. Chem., 2001, 11: 1715

    11. [11]

      [11]. Formasiero, P.; Monte, R. D.; Rao, G. J. Catal., 1995, 151: 165

    12. [12]

      [12]. Zhou, R. X.; Chen, P.; Zheng, X. M.; Chen, L. S. Acta Phys. -Chim. Sin., 1996, 12:464. [周仁贤, 陈 平, 郑小明, 陈林深. 物理化学学报, 1996, 12: 464]

    13. [13]

      [13]. Zhou, R. X.; Zheng, X. M. Acta Phys. -Chim. Sin., 1995, 11: 315[周仁贤, 郑小明. 物理化学学报, 1995, 11: 315]

    14. [14]

      [14]. Wei, W. G; Jung, H. W.; Chang, L.; Che, N.; Nan, P. X.; Chung, Y. Catal. Today, 2004, 97: 307

    15. [15]

      [15]. Zhou, X. L.; Yu, G. X.; Jin, Y. Q. J. East Chin. Univ. Sci. Technol., 2007, 33:309. [周晓龙, 余国贤, 金亚清. 华东理工大学学报, 2007, 33: 309 ]

    16. [16]

      [16]. Xia, Y. D.; Hua, W. M.; Gao, Z. Acta Chim. Sin., 1999, 57:1325. [夏勇德, 华伟明, 高 滋. 化学学报, 1999, 57: 1325] 2229


  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    14. [14]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    15. [15]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    16. [16]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(1182)
  • Abstract views(3220)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return