Citation: TIAN Ying, YAN Jing-Wang, LIU Xiao-Xue, XUE Rong, YI Bao-Lian. Electrochemical Capacitance of Composites with MnOx Loaded on the Surface of Activated Carbon Electrodes[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2151-2157. doi: 10.3866/PKU.WHXB20100636 shu

Electrochemical Capacitance of Composites with MnOx Loaded on the Surface of Activated Carbon Electrodes

  • Received Date: 22 December 2009
    Available Online: 10 May 2010

    Fund Project:

  • Activated carbon/manganese oxide (MnOx) composites were prepared by the thermal decomposition of Mn(NO3)2 that was impregnated on the surface of activated carbon XC-72 with a specific surface area of 250 m2·g-1 and on YEC-8 with a specific surface area of 1726 m2·g-1 at 200 ℃. The surface morphology and crystalline structure of the composites were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The electrochemical properties of the composites were tested by cyclic voltammetry, galvanostatic charge-discharge, and impedance spectroscopy. We found that α-Mn2O3 and α-Mn3O4 were formed when the composites were annealed at 200 ℃. At mass ratios of C and MnOx of 2∶1 and 9∶1, the specific capacitance of MnOx in the composites of XC-72/MnOx was 499 and 435 F·g-1 and the specific capacitance of MnOx in the composites of YEC-8/MnOx was 554 and 606 F·g-1, respectively. This suggests a significant contribution of pseudocapacitance from MnOx to the specific capacitance of the electrode.

  • 加载中
    1. [1]

      [1]. Wang, D. W.; Cheng, H. M. Chin. Sci. Bull., 2008, 53: 975 [王大伟, 成会明. 科学通报, 2008, 53: 975]

    2. [2]

      [2]. Mondal, S. K.; Munichandraiah, N. J. Power Sources, 2008, 175: 65763

    3. [3]

      [3]. Wu, N. L.; Kuo, S. L.; Lee, M. H. J. Power Sources, 2002, 104: 62

    4. [4]

      [4]. Zhang, H. J.; Tang, F, Q,; Jin, Y.; Wang, L. Z.; Chen, Y. C.; Lim, M.; Zhang, L.; Lu, G. Q. Carbon, 2009, 47: 1534

    5. [5]

      [5]. Beaudrouet, E.; Le Gal La Salle, A.; Guyomard, D. Electrochim. Acta, 2009, 54: 1240

    6. [6]

      [6]. Pang, S. C.; Anderson, M. A.; Chapman,T. W. J. J. Electrochem. Soc., 2000, 147: 444

    7. [7]

      [7]. Shinomiya, T.; Gupta, V.; Miura, N. Electrochim. Acta, 2006, 51: 4412

    8. [8]

      [8]. Prasad, K. R.; Miura, N. J. Power Sources, 2004, 135: 354

    9. [9]

      [9]. Nagarajan, N.; Cheong M.; Zhitomirsky, I. Mater. Chem. Phys., 2007, 103: 47

    10. [10]

      [10]. Broughton, J. N.; Brett, M. J. Electrochim. Acta, 2005, 50: 4814

    11. [11]

      [11]. Brousse, T.; Taberna, P. L.; Crosnier, O.; Dugasa, R.; Guillemet, P.; Scudeller,Y.; Zhou, Y.; Favier , F.; Belanger, D.; Simon, P. J. Power Sources, 2007, 173 : 633

    12. [12]

      [12]. Yoon, S.; Lee, C.; Ohb, S. M.; Parka, Y. K.; Choi, W. C. J. Non-Cryst. Solids, 2009, 355: 252

    13. [13]

      [13]. Sharma, R. K; Oh, H. S.; Shul, Y. G.; Kim, H. J. Power Sources, 2007, 173: 1024

    14. [14]

      [14]. Koa, J. M.; Kim, K. M. Mater. Chem. Phys., 2009, 114: 837

    15. [15]

      [15]. Deng, M. G.; Zhang, Z. A.; Hu, Y. D.; Wang, B. H.; Yang, B. C. J. Chin. Ceram. Soc., 2004, 32:411. [邓梅根, 张治安, 胡永达, 汪斌华, 杨邦朝. 硅酸盐学报 , 2004, 32: 411]

    16. [16]

      [16]. Wang, H. B.; Tian, Y. H. Chin. J. Rare Met., 2007, 31: 197 [王海滨, 田艳红. 稀有金属, 2007, 31: 197]

    17. [17]

      [17]. Lei, Y.; Fournier, C.; Pascal, J. L.; Favier, F. Mesop. Mater., 2008, 110: 167

    18. [18]

      [18]. Xie, X.; Gao, L. Carbon, 2007, 45: 2365

    19. [19]

      [19]. Li, J.; Zhitomirsky, I. J. Mater. Process. Technol., 2009, 209: 3452

    20. [20]

      [20]. Zheng, H.; Tang, F.; Jia, Y.; Wang, L.; Chen, Y.; Lim, M.; Zhang, L.; Lu, G. Carbon, 2009, 47: 1534

    21. [21]

      [21]. Chang, J. K.; Huang, C. H.; Lee, M. T.; Tsai, W. T.; Deng, M. J.; Sun, I. W. Electrochim. Acta, 2009, 54: 3278

    22. [22]

      [22]. Jeong, Y. U.; Manthiram, A. J. Electrochem. Soc., 2002, 149: A1419

    23. [23]

      [23]. Chang, J. K.; Chen, Y. L.; Tsai, W. T. J. Power Sources, 2004, 135: 344

    24. [24]

      [24]. Ragupathy, P.; Vasan, H. N.; Munichandraiah, N. J. Electrochem. Soc., 2008, 155: A34

    25. [25]

      [25]. Sugimoto, W.; Iwata, H.; Yokoshima, K.; Murakami,Y.; Takasu, Y. J. Phys. Chem. B, 2005, 109: 7330

    26. [26]

      [26]. Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. J. Power Sources, 2009, 186: 543


  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

Metrics
  • PDF Downloads(1633)
  • Abstract views(2754)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return