Citation: Ren Si-Li, Yang Sheng-Rong, Xue Qun-Ji. Perfluorodecanoic Acid Ultrathin Film on Single Crystal Silicon Substrate Coated with Polyethyleneimine[J]. Acta Physico-Chimica Sinica, ;2001, 17(02): 97-100. doi: 10.3866/PKU.WHXB20010201
-
Ultrathin film of perfluorodecanoic acid expected to be excellent lubricant for micromachines was prepared successfully on single crystal silicon substrate.The film was characterized by means of Xray photoelectron spectroscopy (XPS) and contactangle meter.The chemical reaction involved in the preparation of the ultrathin film was discussed as well.After being immersed in a dilute aqueous solution of polyethyleneimine (PEI) for 15 minutes and rinsed with distilled water,the silicon substrate was coated with a thin film of PEI,which was then put into a dilute solution (1×10-3 mol•L-1) of perfluorodecanoic acid in hexadecane.Subsequently the steady perfluorodecanoic acid ultrathin film was developed on PEI coating in the presence of a covalent amide bond between carboxylic group and the primary or secondary amine groups of PEI.This process was accompanied by the contact angle changes of water droplet on the Si surface (see Table 1).Moreover,the reaction between perfluorodecanoic acid and PEI was significantly influenced by N,N′dicyclohexylcarbodiimide (DCCD).The contact angle on the ultrathin film of perfluorodecanoic acid is only 66.3° in the absence of DCCD in the reacting solution; it rises to 89.4° in the presence of DCCD.This indicates that the reaction between perfluorodecanoic acid and PEI was accelerated by DCCD,and the quality of perfluorodecanoic acid ultrathin film thus improved.XPS analysis of the ultrathin film indicates that the derivatization of PEI with perfluorodecanoic acid was accompanied by several changes.First,a large and highly symmetrical F 1s peak appeared at 688.3 eV (C-F).Secondly,a new peak of N 1s appeared at 400.7 eV (chemical shift 1.4 eV),which was attributed to the N atom attached to the carbonyl group (O=C-N).Thirdly,three new peaks of C 1s appeared at 286.1 eV (chemical shift 1.5 eV),288.1 eV (chemical shift 3.5 eV),and 291.0 eV (chemical shift 5.4 eV),respectively.These C 1s peaks were attributed to the C atom attached to the O=C-N group (O=C-N-C),the carboxyl C atom (O=C-N),and the C atom in -CF3 group (C-F),respectively.Therefore it can be concluded that perfluorodecanoic acid has been chemically adsorbed onto the surface of PEI and perfluorodecanoic acid ultrathin film prepared successfully.
-
-
[1]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[2]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[3]
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
-
[4]
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
-
[5]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[6]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[7]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[8]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[9]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[10]
Shahua Huang , Xiaoming Guo , Lin Lin , Guangping Chang , Sheng Han , Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064
-
[11]
Xiaofeng Xia , Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063
-
[12]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[13]
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
-
[14]
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
-
[15]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[16]
Weitai Wu , Laiying Zhang , Yuan Chun , Liang Qiao , Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031
-
[17]
Laiying Zhang , Weitai Wu , Yiru Wang , Shunliu Deng , Zhaobin Chen , Jiajia Chen , Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032
-
[18]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[19]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[20]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[1]
Metrics
- PDF Downloads(3059)
- Abstract views(3655)
- HTML views(0)