Citation: Huang Yuanhe, Liu Ruozhuang*. QUANTITATIVE PERTUBATIONAL CRYSTAL ORBITAL METHOD[J]. Acta Physico-Chimica Sinica, ;1987, 3(04): 341-344. doi: 10.3866/PKU.WHXB19870402 shu

QUANTITATIVE PERTUBATIONAL CRYSTAL ORBITAL METHOD

  • Received Date: 7 March 1987
    Available Online: 15 August 1987

  • Quantitative pertubational molecular orbital method (PMO) has been found to be very useful for interpretation and prediction of the structure-property relations. However,there is yet no such method for polymers and crystal. In this work, we have developed a quantitative pertubational crystal orbital method (PCO) within the framework of ab initio SCF-CO theory. In this procedure, the unit cell is divided into fragments, and the fragmental crystal orbitals are calculated by ab initio SCF- CO method. Then by meas of pertubation theory, the interaction between the fragmental crystal orbital can be calculated, and the properties of crystal or polymers are analyzed from the point of view of the interactions between the fragmental crystal orbitals.
    If the composite polymer is —(AB)—_n, and the fragmental polymers are —(A)—_n and —(B)—_n, then from pertubation theory , we have the first order and second order correction for energy of the ith band with wave vector k:
    E_i~((2)k)=-Σ_(h(≠i) {|Δ_(i j)~k-S_(i j)~kE_i~((0)k)|~2}/{E_j~((0)k)-E_i~((0)k)}
    where Δ_(i j)~k and S_(i j)~k are the matrix elements of the followong matrix respectively:
    Δ~k=C~((0)k+)δF~kC~((0)k), S~k=C~((0)k+)s~kC~((0)k)
    and
    δF=[F_A~k-F_A~((0)k) F_(AB)~k C~((0)k)=[C_A~((0)k) O
    F_(AB)~(k+) F_B~k-F_B~((0)k)], O C_B~((0)k)]
    S~k is the overlap matrix when atomic orbitals are used as basis set and the S~k isthe overlap matrix when fragmental crystal orbitals are used as basis set.
    Analo us to the treatment of PMO, we can define the useful terminology “two-electron stabilization and four-electron destabilization” as follows:
    If Ψ_i~((0)k) is a doubly occupied fragmental crystal orbital, Ψ_j~((0)k) is an unccupied fragmental crystal orbital, then the term
    2|Δ_(i j)~k-E_i~((0)k)S_(i j)~k|~2/(E_i~((0)k)-E_j~((0)k))
    approximates the two-electron tabilization interaction energy between Ψ_i~((0)k) and Ψ_j~((0)k).
    If both Ψ_i~((0)k) and Ψ~((0)k) are doubly occupied, the term
    [2/(1-|S_(i j)~k|~2)[{(E_i~((0)k)+E_j~((0)k))|S_(i j)~k|~2-2[Δ_(i j)~k(R)S_(i j)~k(R)+Δ_(i j)~k(I)S_(i j)~k(I)]}
    may be regarded as the four-electron destabilization interaction energy between Ψ_i~((0)k) and Ψ_j~((0)k). (where (R), (I) represent the real part and imaginary part respectively.
    For illustration, we have performed ab initio SCF-CO calculation and PCO calculation on several one dimensional polymers, they are polymethylacetylene, polymonocyanoacetylenes and polyfluoroacetylene. We have explained quite well the effects of substituents (CH_3, CN F) on the π band structure of the polymers from the interaction between the π crytal orbital of the substituents with the π crystal orbitals of the backbone. The details of this work will be published later.
  • 加载中
  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    3. [3]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    4. [4]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    5. [5]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    6. [6]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    9. [9]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    10. [10]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    11. [11]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    12. [12]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(1641)
  • Abstract views(2090)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return