Citation:
	            
		            Li  Ganzuo, Lin  Yuan, Guo  Rong, Wang  Guoting, Hao  Shuxuan, Zhao  Huannsui. HIGH RESOLUTION NMR STUDIES OF THE SOLUBILISED PROCESS OF MICELLAR SOLUTION[J]. Acta Physico-Chimica Sinica,
							;1986, 2(02): 183-189.
						
							doi:
								10.3866/PKU.WHXB19860213
						
					
				
					
				
	        
- 
	                	This investigation is related to solubilisation process of aqueous micellar solu- tion containing nonpolar m-xylene or moderately polar benzyl alcohol and surfac- tant sodium dodecyl sulfate (SDS) by high resolution proton nuclear magnetic resonance spectroscopy (~1H-NMR).
The examined results indicate that the long chain methylene in SDS shows a singlet signal for m-xylene/SDS/H_2O system,while it is split into an up-field signal and a down-field signal for benzyl alcohol/SDS/H_2O system. From the de- pendence of chemical shifts of SDS on solubilisate concentration, it is ascertained that at low solubilisate contents m-xylene or benzyl alcohol is solubilised by adsorption at the micelle-water “interface”. With further addition of m-xylene, it is solubilised and uniformly distributed along the hybrocarbon chain of surfactant. When mole fraction of m-xylene in surfactant is about 0.34, m-xylene es predominantly the hydrocarbon chain of hte surfactant molecules. Whereas, benzyl alcohol solubilisation is probably localized in the palisade layer. It is orientated in such a manner ring is directed towarde the micellar interior. When a benzyl alcohol content approximates to 0.77 mole fraction, benzyl alcohol may predominantly to the centre of the micellar interior core.
The above-mentioned results are also discussed theoretically in this paper. - 
	                	
	                 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
 - 
				[2]
				
Pingping Zhu , Qiang Zhou , Yu Huang , Haiyang Yang , Pingsheng He , Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170
 - 
				[3]
				
Wenbing Hu , Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015
 - 
				[4]
				
Liping Wang , Huanfeng Wang , Yuling Li , Lingchuan Li , Xiaojing Li , Huifeng Chen , Bowen Ji , Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035
 - 
				[5]
				
Yan Zhang , Xiaoyan Cao , Yiming Li , Shuwei Xia , Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027
 - 
				[6]
				
Jianmin Hao , Ruifeng Wu , Ying Wang , Yijia Bai , Xuechuan Gao , Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103
 - 
				[7]
				
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
 - 
				[8]
				
Manman Jin , Zhiguo Lv , Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030
 - 
				[9]
				
Wenwen Zhang , Peichao Zhang , Conghao Gai , Xiaoyun Chai , Yan Zou , Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076
 - 
				[10]
				
Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014
 - 
				[11]
				
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
 - 
				[12]
				
Tiantian Dai , Xi Yang . Teaching Design and Reflection on the “Osmotic Pressure of Solutions” in Medical Chemistry. University Chemistry, 2025, 40(5): 268-275. doi: 10.12461/PKU.DXHX202411032
 - 
				[13]
				
Chuan′an DING , Weibo YAN , Shaoying WANG , Hao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198
 - 
				[14]
				
Yuhui Yang , Jintian Luo , Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056
 - 
				[15]
				
Chunyang Bao , Ruoxuan Miao , Yuhan Ding , Qingfu Ban , Yusheng Qin , Jie Liu , Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087
 - 
				[16]
				
Pingsheng He , Haiyang Yang , Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029
 - 
				[17]
				
Hujun Qian , Rui Shi , Guanglu Wu , Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009
 - 
				[18]
				
Jiashuang Lu , Xiaoyang Xu , Youqing He , Mingyue Wu , Ruixin Shi , Wenfang Yu , Hang Lu , Ji Liu , Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143
 - 
				[19]
				
Weijie Yang , Mansheng Chen , Chen Xu , Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072
 - 
				[20]
				
Fan Yang , Yanhong Bai , Pin Gao , Xinhua Duan , Yunchuan Xie . Exploration and Practice of Teaching Reform in Polymer Chemistry Experiment Course. University Chemistry, 2025, 40(10): 63-71. doi: 10.12461/PKU.DXHX202412013
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1609)
 - Abstract views(2204)
 - HTML views(16)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: