Citation: Xunzhang Fan,  Yuanjin Zhao,  Shufang Luo,  Aihua He. Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing[J]. University Chemistry, ;2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065 shu

Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing

  • Received Date: 19 December 2023
    Revised Date: 13 March 2024

  • This article commemorates the 50th anniversary of the passing of Karl Ziegler, a Nobel Prize-winning German chemist, by exploring his scientific journey and remarkable contributions. Ziegler’s unwavering passion for science, unique thinking, and exceptional experimental skills formed the bedrock of his scientific endeavors. His research primarily focused on free radical compounds, polycyclic compounds, and organometallic compounds. The Ziegler-Natta catalyst, which he co-invented and named alongside Giulio Natta, had far-reaching implications for the global polyolefin industry, giving rise to a market worth billions of dollars.
  • 加载中
    1. [1]

      Kanellopoulos, V.; Kiparissides, C. Multimodal Polymers with Supported Catalysts: Design and Production; 1st ed.; Springer Nature Switzerland AG: Switzerland, 2019; pp. 155–203.

    2. [2]

      Ricci, G.; Pampaloni, G.; Sommazzi, A.; Masi, F. Macromolecules 2021, 54 (13), 5879.

    3. [3]

      Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67 (19–20), 541.

    4. [4]

      Böhm, L. Chem. Ing. Tech. 1984, 56 (9), 674.

    5. [5]

      Eisch, J. J. J. Chem. Educ. 1983, 60 (12), 1009.

    6. [6]

      Kapischke, M.; Pries, A. Surgery 2014, 155 (2), 347.

    7. [7]

      Sivaram, S. Resonance 2017, 22, 985.

    8. [8]

      Eisch, J. J. Organometallics 2012, 31 (14), 4917.

    9. [9]

      Ziegler, K.; Boye, E. Justus Liebigs Annalen Der Chemie 1927, 458 (1), 229.

    10. [10]

      Oesper, R. E. J. Chem. Educ. 1948, 4 (9), 78.

    11. [11]

      Ziegler, K.; Bähr, K. Berichte Der Deutschen Chemischen Gesellschaft 1928, 61 (2), 253.

    12. [12]

      Ziegler, K.; Kleiner, H. Justus Liebigs Annalen Der Chemie 1929, 473 (1), 57.

    13. [13]

      Pybus, D. H.; Sell, C. S. The Chemistry of Fragrances: From Perfumer to Consumer, 2nd ed.; Royal Society of Chemistry: UK, 2006; pp. 93–95.

    14. [14]

      Ziegler, K.; Eberle, H.; Ohlinger, H. Justus Liebigs Annalen Der Chemie 1933, 504 (1), 94.

    15. [15]

      Bawn, C. E. H. Biographical Memoirs of Fellows of the Royal Society 1975, 21, 569.

    16. [16]

      Ziegler, K.; Colonius, H. Justus Liebigs Annalen Der Chemie 1930, 479 (1), 135.

    17. [17]

      Ziegler, K.; Gellert, H. G. Justus Liebigs Annalen Der Chemie 1950, 567 (1), 195.

    18. [18]

      Kauffman, G. B. J. Chem. Educ. 1986, 63, A181

    19. [19]

      Martin, H. Polymers, Patents, Profits: A Classic Case Study for Patent Infighting, 1st ed.; Wiley-Vch Verlag GmbH & Co.KGaA: Weinheim, Germany, 2007; pp. 1–33.

    20. [20]

      Ziegler, K.; Breil, H.; Holzkamp, E.; Martin, H. Verfahren zur Herstellung von hochmolekularen Polyaethylenen. Ger. Pat. Appl. 973626C, 1960.

    21. [21]

      Schaffner, K. Angew. Chem. 2003, 115 (26), 3038.

    22. [22]

      Ziegler, K. Rubber Chem. Technol. 1965, 38 (1), 23.

    23. [23]

      Natta, G. J. Polym. Sci. Pol. Chem. 1996, 34 (3), 321.

    24. [24]

      Hoffmann, R. W. Angew. Chem. Int. Edit. 2001, 40 (8), 1411.

    25. [25]

      Norio, K.; Tadaichi, T.; Hiroshi, F. Process for the polymerization and/or copolymerization of olefins with the use of ziegler-type catalysts supported on carrier. US. Pat. Appl. 3642746A, 1972.

    26. [26]

      Sun-Chueh, K.; John, K. F. Katalysator zur Regulierung der Molekulargewichtsverteilung von Äthylenpolymeren. Eur. Pat. Appl. 0349927A2, 1990.

    27. [27]

      Zheng, W. P.; Ma, Y. P.; Du, D. L.; He, A. H.; Shao, H. F.; Liu, C. G. Chinese J. Polym. Sci. 2021, 39 (1), 70.

    28. [28]

      Härkönen, M.; Seppälä, J. V.; Väänänen, T. Studies in Surface Science and Catalysis 1990, 56, 87.

    29. [29]

      Sacchi, M. C.; Tritto, I.; Shan, C. J.; Mendichi, R.; Noristi, L. Macromolecules 1991, 24 (26), 6823.

    30. [30]

      Cecchin, G.; Morini, G.; Pelliconi, A. Macromolecular Symposia 2001, 173 (1), 195.

    31. [31]

      Zheng, W. P.; Zhao, Y. J.; Han, M. C.; Zhou, C. S.; He, A. H. Polymer 2021, 228, 123925.

    32. [32]

    33. [33]

      Sinn, H.; Kaminsky, W.; Vollmer, H.; Woldt, R. Angew. Chem. Int. Edit. 1980, 19 (5), 390.

    34. [34]

      Niu, Q. T.; Zhang, J. Y.; He, A. H. Polym. Int. 2021, 70 (10), 1449.

    35. [35]

      Niu, Q. T.; Zhang, J. Y.; Peng, W.; Fan, Z. Q.; He, A. H. Mol. Catal. 2019, 471, 1.

    36. [36]

      Han, M. C.; Zhao, Y. J.; Luo, S. F.; Fan, X. Z.; He, A. H. Mol. Catal. 2023, 537, 112938.

    37. [37]

      Galli, P.; Vecellio, G. Prog. Polym. Sci. 2001, 26 (8), 1287.

    38. [38]

      Dong, K. X.; Zhang, J. Y.; He, A. H. Polymer 2021, 235, 124231.

    39. [39]

      Busico, V.; Causà, M.; Cipullo, R.; Credendino, R.; Cutillo, F.; Friederichs, N.; Lamanna, R.; Segre, A.; Castelli, V. V A. J. Phys. Chem. C 2008, 112 (4), 1081.

    40. [40]

      Liang, P.; Li, W.; Chen, Y. M.; Dong, C. D.; Zhou, Q.; Feng, Y. R.; Chen, M.; Dai, J. C.; Ren, C. J.; Jiang, B. B.; et al. ACS Catal. 2021, 11 (8), 4411.

    41. [41]

      Peng, W.; Xie, J. M.; Zhang, J. Y.; Yang, X.; He, A. H. Mol. Catal. 2020, 494, 111110.

    42. [42]

      Xie, J. M.; Tan, X. S.; Peng, W.; Yang, X.; He, A. H. Mol. Catal. 2021, 502, 111399.

    43. [43]

      D’Amore, M.; Taniike, T.; Terano, M.; Ferrari, M. A. Materials 2022, 15 (3), 909.

    44. [44]

      Wilke, G. Angew. Chem. Int. Edit. 2003, 42 (41), 5000.

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(0)
  • Abstract views(210)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return