Citation:
Dan Li, Hui Xin, Xiaofeng Yi. Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production[J]. University Chemistry,
;2024, 39(8): 204-211.
doi:
10.3866/PKU.DXHX202312046
-
This study outlines the design of a comprehensive chemical experiment to synthesize Ni-based nanocatalysts with varying grain sizes for biofuel production. Ni/CeO2、Ni/CeO2-SiO2and Ni/SiO2 nanomaterials were prepared via a conventional impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The integrated scientific training process—from catalyst synthesis and structural characterization to performance evaluation—not only cultivate students’ comprehensive experimental skills, but also enhance their research literacy. This experiment aims to illuminate the intrinsic relationship between material structure and function, fostering a curiosity for investigating the unknown in the scientific realm. Moreover, the experiment incorporates a curricular focus on the “energy crisis”, heightening students’ awareness of current energy and environmental challenges, and inspiring a personal commitment to environmental stewardship.
-
Keywords:
- Ni-based catalyst,
- Deoxygenation catalyst,
- Biofuel
-
-
-
[1]
-
[2]
Gosselink, R. W.; Hollak, S. A. W.; Chang, S. W.; Haveren, J. V.; Jong, K. P. D.; Bitter, J. H.; Es, D. S. V. Chem. Sus. Chem. 2013, 6, 1576.
-
[3]
Hermida, L.; Abdullah, A. Z.; Mohamed, A. R. Renew. Sust. Energy Rev. 2015, 42, 1223.
-
[4]
Phichitsurathaworn, P.; Choojun, K.; Poo-arporn, Y.; Sooknoi, T. Appl. Catal. A: Gen. 2020, 602, 117644.
-
[5]
Remón, J.; Casales, M.; Gracia, J.; Callén, M. S.; Pinilla, J. L.; Suelves, I. Chem. Eng. J. 2021, 405, 126705.
-
[6]
Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; Van bokhoven, J. A. Science, 2017, 356, 523.
-
[7]
Wang, Z. J.; Chang, H. H.; Zhang, J.; Sun, Z. H.; Wu, Y. L.; Liu, Y. M.; Zhu, Y. F.; He, H. Y.; Cao, Y.; Bao, X. H. Chem. Commun. 2022, 58 (23), 3779.
-
[8]
Li, B.; Zhang, B.; Guan, Q.; Chen, S.; Ning, P. Int. J. Hydrog. Energy 2018, 43, 19010.
-
[9]
Fu, L.; Li, Y.; Cui, H.; Ba, W.; Liu, Y. Appl. Catal. A: Gen. 2021, 623, 118258.
-
[10]
Yan, C.; Li, H.; Ye, Y.; Wu, H.; Cai, F.; Si, R.; Xiao, J.; Miao, S.; Xie, S.; Yang, F.; et al. Energy Environ. Sci. 2018, 11, 1204.
-
[11]
Ni, Z.; Djitcheu, X.; Gao, X.; Wang, J.; Liu, H.; Zhang, Q. Sci. Rep. 2022, 12, 5344.
-
[12]
Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. J. Phys. Chem. B 2005, 109, 24380.
-
[13]
Zhang, H.; Estudillo-Wong, L. A.; Gao, Y.; Feng, Y.; Alonso-Vante, N. J. Energy Chem. 2021, 59, 615.
-
[14]
Zeng, Y.; Wang, H.; Yang, H.; Juan, C.; Li, D.; Wen, X.; Zhang, F.; Zhou, J.; Peng, C.; Hu, C. Chin. J. Catal. 2023, 47, 229.
-
[15]
Gao, S.; Li, Y.; Guo, W.; Ding, X.; Zheng, L.; Wu, L.; Yan, H.; Wang, Y. Mol. Catal. 2022, 533, 112766.
-
[16]
Jomjaree, T.; Sintuya, P.; Srifa, A.; Koo-amornpattana, W.; Kiatphuengporn, S.; Assabumrungrat, S.; Sudoh, M.; Watanabe, R.; Fukuhara, C.; Ratchahat, S. Catal. Today 2021, 375, 234.
-
[17]
Hollinger, G. Appl. Surf. Sci. 1981, 8 (3), 318.
-
[18]
Yan, X.; Hu, T.; Liu, P.; Li, S.; Zhao, B.; Zhang, Q.; Jiao, W.; Chen, S.; Wang, P.; Lu, J.; et al. Appl. Catal. B: Environ. 2019, 246, 221.
-
[19]
Zhang, B.; Zhang, S.; Liu, B. Appl. Surf. Sci. 2020, 529, 147068.
-
[20]
Zhang, Y.; Lu, J.; Zhang, L.; Fu, T.; Zhang, J.; Zhu, X.; Gao, X.; He, D.; Luo, Y.; Dionysiou, D. D.; et al. Appl. Catal. B: Environ. 2022, 309, 121249.
-
[21]
Zhang, Z.; Li, J.; Gao, W.; Ma, Y.; Qu, Y. J. Mater. Chem. A 2015, 3 (35), 18074.
-
[22]
Zhang, L. J.; Chen, R. H.; Tu, Y.; Gong, X. Y.; Cao, X.; Xu, Q.; Li, Y.; Ye, B. J.; Ye, Y. F.; Zhu, J. F. ACS Catal. 2023, 13 (4), 2202.
-
[23]
Cheng, Z.; Shan, H.; Sun, Y.; Zhang, L.; Jiang, H.; Li, C. Appl. Surf. Sci. 2020, 513, 145766.
-
[24]
Li, M.; Amari, H.; van Veen, A. C. Appl. Catal. B: Environ. 2018, 239, 27.
-
[25]
-
[26]
-
[1]
-
-
-
[1]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[2]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[3]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[4]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[7]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[8]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[9]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[10]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[11]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[12]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[13]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[14]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[15]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[16]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[17]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[18]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[19]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[20]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(121)
- HTML views(13)