Citation:
Zhibei Qu, Changxin Wang, Lei Li, Jiaze Li, Jun Zhang. Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles[J]. University Chemistry,
;2024, 39(7): 278-286.
doi:
10.3866/PKU.DXHX202311039
-
Organoid-on-a-chip technology emerges as a groundbreaking interdisciplinary innovation of the 21st century, cultivating human cells in three-dimensions ex vivo to form organoids. These organoids replicate human physiological and pathological conditions as well as functions akin to human organs. Integratable with electronic chips, this technology finds extensive applications in drug screening, safety evaluation, personalized medicine, in vitro diagnosis. As a recent avant-grade technological advancement, organoid-on-a-chip demonstrates several benefits over traditional cell-based animal testing methods used for drug screening, such as lower costs, better animal welfare, higher precision, and wider applicability. This positions it at the forefront of future drug screening and safety evaluation methodologies. The use of organoid chips in drug screening encapsulates a plethora of inherent biochemical principles. Incorporating organoid-on-chip related knowledge into university curricula plays a significant role in enabling medical and pharmaceutical students to stay abreast of the forefront in drug development and to grasp biochemical concepts in a more systematic manner. Therefore, this paper begins with the concept of organoid chips, exploring their design, principles, and applications in drug screening, while anticipating their future developments. Simultaneously, it focuses on the multidisciplinary interdisciplinary characteristics of organoid chips in fields, such as cell biology, medicinal chemistry, biochemistry, and electronic information science, analyzing the inherent biochemical principles. In line with this, the paper proposes an 8 lecture-course design for the Biochemistry curriculum, aiming to meet the evolving educational demands for nurturing innovative talents in the pharmaceutical sector.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
Zhang, B. Y.; Korolj, A.; Lai, B. F. L; Radisic, M. Nat. Rev. Mater. 2018, 3 (8), 257.
-
[5]
-
[6]
-
[7]
-
[8]
Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, L.; Burke, R.; et al. Science 2018, 359 (6378), 920.
-
[9]
-
[10]
-
[11]
-
[12]
Cho, A.-N.; Jin, Y.; An, Y.; Kim, J.; Choi, Y. S.; Lee, J. S.; Kim, J.; Choi, W.-Y.; Koo, D.-J.; Yu, W.; et al. Nat. Commun. 2021, 12, 4730.
-
[13]
Wang, Y.; Wang, H.; Deng, P.; Tao, T.; Liu, H.; Wu, S.; Chen, W.; Qin, J. ACS Biomater. Sci. Eng. 2020, 6(10), 5734.
-
[14]
Schuster, B.; Junkin, M.; Kashaf, S. S.; Romero-Calvo, I.; Kirby, K.; Matthews, J.; Weber, C. R.; Rzhetsky, A.; White, K. P.; Tay, S. Nat. Commun. 2020, 11, 5271.
-
[15]
Rajan, S. A. P.; Aleman, J.; Wan, M.; Zarandi, P. N.; Nzou, G.; Murphy, S.; Bishop, C. E.; Sadri-Ardekani, H.; Shupe, T.; Atala, A.; et al. Acta Biomater. 2020, 106, 124.
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[22]
-
[23]
-
[24]
-
[25]
-
[26]
-
[27]
-
[28]
-
[29]
-
[30]
-
[31]
-
[32]
-
[33]
-
[1]
-
-
-
[1]
Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022
-
[2]
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
-
[3]
Dapeng Liu , Fang Wang , Jingbin Zeng . Exploration on College Chemistry Teaching Focused on Cultivation of Scientific Research Ability. University Chemistry, 2024, 39(8): 126-131. doi: 10.3866/PKU.DXHX202401034
-
[4]
Jinglun Wang , Hu Zhou , Baishu Zheng , Guobin Li , Ming Yue , Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013
-
[5]
Dongcheng Liu , Xiaokun Li , Huancheng Hu , Cunji Gao , Qiong Hu , Shuting Li , Yuning Liang . Chemistry Experimental Teaching Reform for the Promotion of Training Exceptional Chemistry Teachers for Normal Schools. University Chemistry, 2024, 39(8): 1-6. doi: 10.3866/PKU.DXHX202311072
-
[6]
Yecang Tang , Shan Ling , Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107
-
[7]
Ziheng Zhuang , Xiao Xu , Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040
-
[8]
Qin Tu , Anju Tao , Tongtong Ma , Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062
-
[9]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[10]
Haibo Zhang , Yuwen Liu , Qiong Ding , Chi Huang , Faqiong Zhao , Jinping Zhou . The Construction of National Demonstration Center for Experimental Chemistry Education and the Practice of Top-Notch Innovative Talent Cultivation. University Chemistry, 2024, 39(7): 82-92. doi: 10.12461/PKU.DXHX202405012
-
[11]
Changwei Dun , Xijun Zhang , Qianyi Zhao , Yuming Guo . Promoting the Construction of the Chemical Experiment Teaching Center and Forging a New Era in Cultivating Innovative Talents. University Chemistry, 2024, 39(7): 211-217. doi: 10.12461/PKU.DXHX202405139
-
[12]
Luhong Chen , Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089
-
[13]
Li Zhou , Dongyan Tang , Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037
-
[14]
Anyang Li , Xiaohui Ning , Zhihui Ren , Wei Sun , Yan Li , Bin Cui . Support and Guarantee for Talent Cultivation and Discipline Development: Exploration and Practice of the Construction of National Demonstration Center for Experimental Chemistry Education in Northwest University. University Chemistry, 2024, 39(7): 140-146. doi: 10.12461/PKU.DXHX202405052
-
[15]
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
-
[16]
Bing Yuan , Fengli Yu , Congxia Xie . Teaching Cases Design of Catalysis Courses for Emerging Engineering Education. University Chemistry, 2024, 39(3): 191-198. doi: 10.3866/PKU.DXHX202309032
-
[17]
Dongxue Han , Zhuoyong Li , Hanbo Zou , Xu Wu , Yang Yuan , Hongbin Li . Research on Innovative Experimental Teaching to Cultivate Top Talents. University Chemistry, 2024, 39(7): 230-236. doi: 10.12461/PKU.DXHX202406094
-
[18]
Yang Lei , Jieqiong Cai , Daming Sun , Caihong Tao . Exploration and Practice of Integrating Moral Education with Engineering Talent Development in the Instruction of “Principles of Chemical Engineering”. University Chemistry, 2025, 40(3): 230-236. doi: 10.12461/PKU.DXHX202406071
-
[19]
Qian Shao , Jiajing Tan , Yongmei Chen , Jiyue Jing , Zhuo Wang . Exploration and Practice on the Management of Extracurricular Innovation Laboratories in Chemistry. University Chemistry, 2024, 39(4): 19-25. doi: 10.3866/PKU.DXHX202310119
-
[20]
Wei Tan , Feng Shi . Cultivation of Scientific Research Innovation Abilities in Chemistry Graduate Students at Local Universities. University Chemistry, 2024, 39(6): 23-28. doi: 10.3866/PKU.DXHX202311098
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(58)
- HTML views(1)