Citation: Quanliang Chen,  Zhaohui Zhou. Research on the Active Site of Nitrogenase over Fifty Years[J]. University Chemistry, ;2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133 shu

Research on the Active Site of Nitrogenase over Fifty Years

  • Received Date: 31 October 2023
    Revised Date: 1 February 2024

  • Nitrogenase is a catalyst used by nitrogen-fixing microorganisms to convert atmospheric nitrogen into ammonia at ambient temperature and pressure. The structure of the active site in molybdenum nitrogenase has evolved from Fe2S2∙Mo2O2 to MoFe7S9C(R-Hhomocit)(cys)(his) (H4homocit = homocitric acid, Hcys = cysteine, Hhis = histidine) through advancements in chemical modeling, spectroscopy, and theoretical calculations, especially for structural biology. This paper provides a comprehensive review of the important achievements in the study of the active site of nitrogenase from a chemical structure perspective over the past fifty years.
  • 加载中
    1. [1]

      Burgess, B.K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983.

    2. [2]

      Smith, B, E.; Richards, R. L.; Newton, W. E. Catalysts for Nitrogen Fixation: Nitrogenases, Relevant Chemical Models and Commercial Processes, 1st ed.; Springer: the Netherlands, 2004.

    3. [3]

    4. [4]

    5. [5]

      Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 3249.

    6. [6]

      Cramer, S. P.; Hodgson, K. O.; Gillum, W. O.; Mortenson, L. E. J. Am. Chem. Soc. 1978, 100, 3398.

    7. [7]

      Lu, J. In Nitrogen Fixation; Newton, W. E.; Orme-Johnson, W. H., Eds.; University Press: Baltimore, M. D. USA, 1980; Vol. I, p. 343.

    8. [8]

      Holm, R. H. Chem. Soc. Rev. 1981, 10, 455.

    9. [9]

      Zimmerman, R.; Miinck, E.; Brill, W. J.; Shah, V. K.; Henzl, M. T.; Rawlings, J.; Orme-Johnson, W. H. Biochem. Biophys. Acta 1978, 537, 185.

    10. [10]

      Kurtz, D. M.; McMillan, R. S.; Burgess, B. K.; Mortenson, L. E.; Holm, R. H. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 4986.

    11. [11]

      Coucouvanis, D.; Kanatzidis, M. G.; Dunham, W. R.; Hagen, W. R. J. Am. Chem. Soc. 1984, 106, 7998.

    12. [12]

    13. [13]

      Challen, P. R.; Koo, S. K.; Dunham, W. R.; Coucouvanis, D. J. Am. Chem. Soc. 1990, 112, 8606.

    14. [14]

      Coucouvanis, D.; Challen, P. R.; Koo, S. K.; Davis, W. M.; Butler, W.; Dunham, W. R. Inorg. Chem. 1989, 28, 4181.

    15. [15]

      Teo, B. K.; Averill, B. A. Biochem. Biophys. Res. Commun. 1979, 88, 1454.

    16. [16]

      Chen, J.; Christiansen, J.; Tittsworth, R. C.; Hales, B. J.; George, S. J.; Coucouvanis, D.; Carmer, S. P. J. Am. Chem. Soc. 1993, 115, 5509.

    17. [17]

      Georgiadis, M. M.; Komiya, H.; Chakrabarti, P.; Woo, D.; Kornuc, J. J.; Rees, D. C. Science 1992, 257, 1653.

    18. [18]

      Kim, J.; Rees, D. C. Science 1992, 257, 1677.

    19. [19]

      Chan, M. K.; Kim J.; Rees, D. C. Science 1993, 260, 792.

    20. [20]

      Peters, J. W.; Stowell, M. H. B.; Soltis, S. M.; Finnegan, M. G.; Johnson, M. K.; Rees, D. C. Biochemistry 1997, 36, 1181.

    21. [21]

      Mayer, S. M.; Lawson, D. M.; Gormal, C. A.; Roe, S. M.; Smith, B. E. J. Mol. Biol. 1999, 292, 871.

    22. [22]

      Einsle, O.; Tezcan, F. A.; Andrade, S. L.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696.

    23. [23]

      Schmid, B.; Ribbe, M. W.; Einsle, O.; Yoshida, M.; Thomas, L. M.; Dean, D. R.; Rees, D. C.; Burgess, B. K. Science 2002, 296, 352.

    24. [24]

      Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334, 940.

    25. [25]

      Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; Debeer, S.; Lancaster K. M. Science 2011, 334, 974.

    26. [26]

      Ludden, P. W.; Shah, V. K.; Roberts, G. P.; Homer, M.; Allen, R.; Paustian, T.; Roll, J.; Chatterjee, R.; Madden, M.; Allen, J.; et al. Molybdenum Enzymes Cofactors and Model Systems; American Chemical Society: Washington, DC, USA, 1993; pp. 196-215.

    27. [27]

    28. [28]

      Wang, S. Y.; Jin, W. T.; Chen, H. B.; Zhou, Z. H. Dalton Trans. 2018, 47(22), 7412.

    29. [29]

      Jin, W. T.; Wang, H. X.; Wang, S. Y.; Dapper, C. H.; Li, X.; Newton, W. E.; Zhou, Z. H.; Cramer, S. P. Inorg. Chem. 2019, 58 (4), 2523.

    30. [30]

      Deng, L.; Wang, H.; Dapper, C. H.; Newton, W. E.; Shilov, S.; Wang, S. L.; Cramer, S. P.; Zhou, Z. H. Commun. Chem. 2020, 3, 145.

    31. [31]

      Chen, Q. L.; Wang, H. X.; Cramer, S. P.; Zhou, Z. H. Coord. Chem. Rev. 2024, 505, 215662.

    32. [32]

      Rehder, D. J. Inorg. Biochem. 2000, 80, 133.

    33. [33]

      Pessoa, J. C.; Garribba, E.; Santos, M. F.; Santos-Silva, T. Coord. Chem. Rev. 2015, 301, 49.

    34. [34]

      Harwood, C. S. Anu. Rev. Microbiol. 2020, 74, 247.

    35. [35]

      Sippel, D.; Einsle O. Nat. Chem. Biol. 2017, 13, 956.

    36. [36]

      Rohde, M.; Grunau, K.; Einsle, O. Angew. Chem. Int. Ed. 2020, 132, 23833.

    37. [37]

      Rohde, M.; Laun, K.; Zebger, I.; Stripp, S. T.; Einsle, O. Sci. Adv. 2021, 7, eabg4474.

    38. [38]

      Chen, C. Y.; Chen, M. L.; Wang, H. X.; Cramer, S. P.; Zhou, Z. H. J. Inorg. Biochem. 2014, 141, 114.

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    6. [6]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    7. [7]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    14. [14]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    15. [15]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(7)
  • Abstract views(248)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return