Citation: Wentao Lin,  Wenfeng Wang,  Yaofeng Yuan,  Chunfa Xu. Concerted Nucleophilic Aromatic Substitution Reactions[J]. University Chemistry, ;2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095 shu

Concerted Nucleophilic Aromatic Substitution Reactions

  • Received Date: 25 October 2023
    Revised Date: 9 January 2024

  • Nucleophilic aromatic substitution reactions play a crucial role in the synthesis of organic compounds and are considered to be one of the most important synthetic transformations. Traditionally, these reactions have been described as stepwise processes in textbooks. However, with further research, the existence of concerted nucleophilic aromatic substitution reactions has been widely confirmed. This paper provides a brief overview of the stepwise pathway of nucleophilic aromatic substitution reactions and focuses on several examples of concerted reactions, highlighting the importance of reaction design in mechanistic studies. Integrating cutting-edge research findings into teaching can enhance students’ understanding of nucleophilic aromatic substitution reactions.
  • 加载中
    1. [1]

      Chen, B.; Zhao, R.;Gove, S.; Wang, B.; Sundeen, J. E.; Salvati, M. E.; Barrish, J. J. Org. Chem. 2003, 68(26), 10181.

    2. [2]

    3. [3]

    4. [4]

      Meisenheimer, J. JustusLiebigs Annalen der Chemie 1902, 323 (2), 205.

    5. [5]

      Cramption, V.; Gold,V. J. Chem. Soc. 1964, 4293.

    6. [6]

      Terrier, F. Chem.Rev. 1982, 82 (2), 77.

    7. [7]

      Artamkina, G. A.;Egorov, M. P.; Beleskaya, I. P. Chem. Rev. 1982, 82 (4),427.

    8. [8]

      Carey, F. A.;Sundberg, R. J. Advanced Organic Chemistry Part A Structure and Mechanism,5th ed.; Plenum Press:New York, NY, USA, 2007; pp. 816-821.

    9. [9]

      Handel, H.; Pasquini,M. A.; Pierre, J. L. Tetrahedron 1980, 36 (22), 3205.

    10. [10]

      Singh, A.; Goel, N. NewJ. Chem. 2015, 39 (6), 4351.

    11. [11]

      Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534 (7607),369.

    12. [12]

      Rohrbach, S.; Smith,A. J.; Pang, J.; Poole, D. L.; Tuttle, T.; Chiba, S.; Murphy, J. A. Angew.Chem. Int. Ed. 2019, 58 (46), 16368.

    13. [13]

      Kwan, E. E.; Zeng, Y.;Besser, H. A.; Jacobsen, E. N. Nat. Chem. 2018, 10 (9), 917.

    14. [14]

      Terrier, F. ModernNucleophilic Aromatic Substitution, Wiley-VCH:Weinheim, Germany, 2013.

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    6. [6]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(4)
  • Abstract views(761)
  • HTML views(284)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return