Citation: Ronghao Zhao,  Yifan Liang,  Mengyao Shi,  Rongxiu Zhu,  Dongju Zhang. Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment[J]. University Chemistry, ;2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101 shu

Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment

  • Corresponding author: Rongxiu Zhu, rxzhu@sdu.edu.cn
  • Received Date: 28 September 2023
    Revised Date: 30 October 2023

  • Pinacol rearrangement is an important topic in undergraduate organic chemistry courses, but students often struggle to fully understand and grasp the rearrangement mechanism, regioselectivity and group migration aptitude. In order to enhance students’ comprehension of pinacol rearrangement reactions, we design an experiment that utilizes computational chemistry methods to address organic chemistry problems. Through intuitive visuals and specific data, the experiment clearly demonstrates that substrates capable of forming stable carbocation intermediates primarily undergo stepwise rearrangement mechanisms, while those unable to form stable intermediates undergo concerted rearrangement mechanisms. The computational results validate that the regioselectivity of the reaction depends on the protonation site of the neighboring diol hydroxyl group and the group migration ability, and it unequivocally establishes the order of group migration ability as hydrogen > aromatic > alkyl. Furthermore, a rational explanation for this order is provided from a microscopic perspective.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      Clayden, J.; Greeves, N.; Warren, S. G. Organic Chemistry, 2nd ed.; Oxford University Press: Oxford, UK, 2012, pp. 945–949.

    5. [5]

      Wadie, T.; Alfy, B. S.; Sami, B. A.; Abdul, A. H. Helv. Chim. Acta1972, 55(8), 2802.

    6. [6]

      Eric, L.; Chen, G. P.; He, T.; Kapa, P.; Oljan, R. Tetrahedron Lett.2002, 43(12), 2161.

    7. [7]

      Ben, M. B.; Clair, J. C. J. Am. Chem. Soc. 1956, 78(17), 4329.

    8. [8]

      William, B. S. Tetrahedron 2002, 58(11), 2091.

    9. [9]

      Kensuke, N.; Yoshihiro, O. J. Phys. Org. Chem. 1990, 3(11), 737.

    10. [10]

      Duncan, J. F.; Lynn, K. R. J. Chem. Soc. 1956, 3519.

    11. [11]

      Herlihy, K. P. Aust. J. Chem. 1981, 34, 107.

    12. [12]

    13. [13]

      Kensuke, N.; Yoshihiro, O. J. Am. Chem. Soc. 1993, 115(20), 9112.

    14. [14]

      Itoh, S.; Yamataka, H. J. Phys. Org. Chem.2010, 23(8), 789.

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision D. 01; Gaussian, Inc.: Wallingford, CT, USA, 2013.

    20. [20]

      Dennington, R.; Keith, T.; Millam, J. GaussView, Version 6.; Semichem Inc.: Shawnee, KS, USA, 2016.

    21. [21]

      Legault, C. Y. CYLview, 1.0b; Universite de Sherbrooke: Sherbrooke, Canada, 2009.

    22. [22]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    23. [23]

      Fukui, K. Acc. Chem. Res.1981, 14(12), 363.

    24. [24]

      Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105(8), 2999.

  • 加载中
    1. [1]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    2. [2]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    3. [3]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    16. [16]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(76)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return