Citation:
Feiya Cao, Qixin Wang, Pu Li, Zhirong Xing, Ziyu Song, Heng Zhang, Zhibin Zhou, Wenfang Feng. Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties[J]. University Chemistry,
;2024, 39(3): 359-368.
doi:
10.3866/PKU.DXHX202308094
-
With the strategic implementation of carbon peaking and carbon neutrality, the demand for advanced energy storage technology is rapidly increasing. Among these, the electrochemical energy storage technologies have been evolving rapidly, and have attracted intensive attention from academia and industrial sectors. In comparison with lithium-ion batteries, magnesium batteries have emerged as an important direction for developing next-generation rechargeable batteries, in view of their higher energy densities, lower cost, higher natural abundance, and environmental friendliness. For classic non-aqueous electrolytes, the formation of the passivation films with low ionic conductivities on magnesium anodes significantly hinders the electrochemical dissolution/deposition of magnesium ions, thereby greatly limiting the development of magnesium batteries. Therefore, the exploration of high-performing magnesium-ion conductive electrolyte systems is a key direction in improving the performance of magnesium batteries. In this work, from the perspective of the classical organic chemistry experiment of “Grignard reaction”, we concentrate on the preparation of magnesium-ion conductive non-aqueous electrolytes and their application in magnesium battery systems. We combine the fundamentals of organic chemistry with cutting-edge technology in electrochemical energy storage, thus helping students to expand their scientific horizons, stimulating their research interests and improving their awareness of energy security and scientific literacy.
-
-
-
[1]
Zhang, Z. H.; Dong, S. M.; Cui, Z. L.; Du, A. B.; Li, G. C.; Cui, G. L. Small Methods 2018, 2 (10), 1800020.
-
[2]
-
[3]
-
[4]
-
[5]
, 457-459.
-
[6]
Gregory, T. D.; Hoffman, R. J.; Winterton, R. C. J. Electrochem. Soc. 1990,137 (3), 775.
-
[7]
Zhang, H.; Qiao, L. X.; Armand, M. Angew. Chem. Int. Ed. 2022, 61 (52), e202214054.
-
[8]
Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach. D. J. Electrochem. Soc. 2008, 155 (2), A103.
-
[9]
-
[10]
-
[11]
Tilstam, U.; Weinmann, H. Org. Process Res. Dev. 2002, 6 (6), 906.
-
[12]
-
[13]
Luo, T. T.; Wang, Y.; Elander, B.; Goldstein, M.; Yu, M.; Wilkes, J.; Fahrenbruch, M.; Lee, J.; Li, T.; Bao, J. L.; et al. Adv. Mater. 2023, in press. doi: 10.1002/adma.202306239
-
[14]
-
[15]
-
[16]
Zhang, H.; Arcelus, O.; Carrasco, J. Electrochim. Acta 2018, 280, 290.
-
[17]
Wang, X. X.; Song, Z. Y.; Wu, H.; Nie, J.; Feng, W. F.; Yu, H. L.; Huang, X. J.; Armand, M.; Zhou, Z. B.; Zhang, H. ChemElectroChem. 2022, 9 (4), e202101590.
-
[18]
Peltzer, R. M.; Eisenstein, O.; Nova, A.; Cascella, M. Phys. Chem. B 2017, 121 (16), 4226.
-
[19]
Zhang, H.; Qiao, L. X.; Kühnle, H.; Figgemeier, E.; Armand, M.; Eshetu, G. G. Energy Environ. Sci. 2023, 16, 11.
-
[1]
-
-
-
[1]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[2]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[3]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[4]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[5]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[6]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[7]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[8]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[9]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[10]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[11]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[12]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[13]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[14]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[15]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[16]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[17]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[18]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[19]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[20]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(122)
- HTML views(37)