Citation: Rui Li,  Jiayu Zhang,  Anyang Li. Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules[J]. University Chemistry, ;2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051 shu

Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules

  • Corresponding author: Anyang Li, liay@nwu.edu.cn
  • Received Date: 10 August 2023

  • Chemical bonding is one of the core concepts in the whole field of chemistry and provides a very effective way of communication. It must be clear that chemical bonds are not real, they are artificially abstracted concepts. To accurately describe chemical bonding, various models or theories have been proposed throughout history. The most widely used models are the electron-pair bonding model and hybrid orbital theory. However, the rules of thumb have their limitations, as evident in the explanation of hypervalent molecules. We suggest that in teaching, hypervalent molecules should be used as examples to explicitly point out the shortcomings of empirical rules in describing chemical bonding to younger students. In another hand, molecular orbital theory or modern valence bond theory can be used on bonding analysis for senior students. It is expected that students maintain an open-minded attitude towards the behavior of chemical bonding and cultivate spirit of scientific inquiry.
  • 加载中
    1. [1]

      Lewis, G. N. J. Am. Chem. Soc. 1916, 38 (4), 762.

    2. [2]

      Lewis, G. N. Valence and the Structure of Atoms and Molecules; The Chemical Catalog Company, Inc.: New York, NY, USA, 1923.

    3. [3]

      Langmuir, I. J. Am. Chem. Soc. 1919,41 (6), 868.

    4. [4]

      Pauling, L. The Nature of the Chemical Bond, 3st ed.; Cornell University Press: Ithaca, NY, USA, 1960.

    5. [5]

      Jensen, W. B. J. Chem. Edu. 2006,83 (12), 1751.

    6. [6]

      Gillespie, R. J.; Silvi, B. Coord. Chem. Rev. 2002, 233‒234, 53.

    7. [7]

    8. [8]

      Norman, N. C.; Pringle, P. G. Chem 2022,4 (4), 1226.

    9. [9]

      Hach, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73 (9), 4321.

    10. [10]

      Pimentel, G. C. J. Chem. Phys. 1951, 19 (4), 446.

    11. [11]

      Kutzelnigg, W. Angew. Chem, Int. Ed. 1984, 23 (4), 272.

    12. [12]

      Reed, A. E.; Weinhold, F. J. Am. Chem. Soc. 1986, 108 (13), 3586.

    13. [13]

      Magnusson, E. J. Am. Chem. Soc. 1990, 112 (22), 7940.

    14. [14]

      Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112 (4), 1434.

    15. [15]

      Shaik, S.; Danovich, D.; Galbraith, J. M.; Braïda, B.; Wu, W.; Hiberty, P. C. Angew. Chem. Int. Ed. 2020, 59 (3), 984.

    16. [16]

      Braïda, B.; Ribeyre, T.; Hiberty, P. C. Chem. Eur. J. 2014, 20 (31), 9643.

    17. [17]

      Ball, P. Nature 2011,469 (7328), 26.

    18. [18]

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    3. [3]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    8. [8]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    14. [14]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    15. [15]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    19. [19]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    20. [20]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

Metrics
  • PDF Downloads(1)
  • Abstract views(436)
  • HTML views(248)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return