Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials
- Corresponding author: Lingbao Xing, lbxing@sdut.edu.cn
Citation:
Kai Yang, Gehua Bi, Yong Zhang, Delin Jin, Ziwei Xu, Qian Wang, Lingbao Xing. Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials[J]. University Chemistry,
;2024, 39(4): 206-212.
doi:
10.3866/PKU.DXHX202308045
Delebecq, E.; Pascault, J.-P.; Boutevin, B.; Ganachaud, F. Chem. Rev. 2013, 113, 80.
].http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm
Guo, A.; Javni, I.; Petrovic, Z. J. Appl. Polym. Sci. 2015, 77, 467.
Sijiang Hu , Hongqiang Wang , Jiming Peng , Fenghua Zheng , Qichang Pan , Kui Liu , Qingyu Li . Ideological and Political Education Practice of the Comprehensive Applied Chemistry Laboratory for Emerging Engineering Education. University Chemistry, 2024, 39(2): 214-220. doi: 10.3866/PKU.DXHX202307019
Liqiang Lu , Qin Shuai , Xike Tian , Chenggang Zhou , Guo'e Cheng , Bo han , Yulun Nie , Hongtao Zheng , Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015
Yangwu Fu , Chuanbo Hu , Shuhong Chen . Teaching Reform and Practice of Physical Chemistry in Local Universities under the Background of Emerging Engineering Education. University Chemistry, 2025, 40(3): 237-244. doi: 10.12461/PKU.DXHX202406040
Bing Yuan , Fengli Yu , Congxia Xie . Teaching Cases Design of Catalysis Courses for Emerging Engineering Education. University Chemistry, 2024, 39(3): 191-198. doi: 10.3866/PKU.DXHX202309032
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Hongxia Yan , Weixu Feng , Junyan Yao , Wei Tian , Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
Guodong Xu , Chengcai Sheng , Xiaomeng Zhao , Tuojiang Zhang , Zongtang Liu , Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
Lijun Huo , Mingcun Wang , Tianyi Zhao , Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059
Wenjun Yang , Qiaoling Tan , Wenjiao Xie , Xiaoyu Pan , Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
Qijin Mo , Meifang Zhuo , Zhiyi Zhong , Chunfang Gan , Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099
Xianggui Kong , Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060