Citation: Xi Xu,  Chaokai Zhu,  Leiqing Cao,  Zhuozhao Wu,  Cao Guan. Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development[J]. University Chemistry, ;2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039 shu

Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development

  • Corresponding author: Xi Xu,  Cao Guan, 
  • Received Date: 7 August 2023

  • Experiential education is widely recognized as an effective teaching method for nurturing students’ problem-solving abilities and fostering innovative thinking through hands-on activities. Furthermore, the field of 3D printing of alloy materials has garnered significant attention in the realm of electrocatalysis. This paper aims to synergize experimental education with 3D printing of alloys, exploring its impact on students and educational outcomes. Initially, the paper introduces the importance and role of experimental education and the characteristics and potential applications of alloy materials. Subsequently, the potential utilization of 3D printing technology in the fabrication of alloys is discussed. To enhance students’ engagement, learning motivation, and scientific literacy, they actively participate in designing and conducting experiments. The primary objective of this research is to provide novel ideas and methodologies for educational practices, cultivating students’ scientific thinking and practical abilities. Additionally, it aims to foster a greater number of innovative talents in the field of materials science and engineering.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Lee, C.Y.; Taylor, A. C.; Nattestad, A.; Beirne, S.; Wallace, G. G. Joule 2019, 3, 1835.

    6. [6]

      Jakus, A. E.; Taylor, S. L.; Geisendorfer, N. R.; Dunand, D. C.; Shah, R. N. Adv. Funct. Mater. 2015, 25, 6985.

    7. [7]

      Tubío, C. R.; Azuaje, J.; Escalante, L.; Coelho, A.; Guitián, F.; Sotelo, E.; Gil, A. J. Catal. 2016, 334, 110.

    8. [8]

      Thakkar, H.; Eastman, S.; Al-Mamoori, A.; Hajari, A.; Rownaghi, A. A.; Rezaei, F. ACS Appl. Mater. Interfaces 2017,9 (8), 7489.

    9. [9]

      Browne, M. P.; Redondo, E.; Pumera, M. Chem. Rev. 2020, 120 (5), 2783.

    10. [10]

      Huang, X.; Chang, S.; Lee, W. S. V.; Ding, J.; Xue, J. M. J. Mater. Chem. A 2017, 5, 18176.

    11. [11]

      Ambrosi, A.; Pumera, M. Adv. Funct. Mater. 2018, 28, 1700655.

    12. [12]

      Kim, S.; Ahn, C.; Cho, Y.; Hyun, G.; Jeon, S.; Park, J. H. Nano Energy 2018, 54, 184.

    13. [13]

      Zhang, F.; Ji, R. J.; Liu, Y. H.; Pan, Y.; Cai, B. P.; Li, Z. J.; Liu, Z.; Lu, S. C.; Wang, Y. T.; Jin, H.; et al. Appl. Catal. B 2020, 276, 119141.

    14. [14]

      García-Moreno, F. Materials 2016, 9 (2), 85.

    15. [15]

      Stern, L. A.; Feng, L.; Song, F.; Hu, X. Energy Environ. Sci. 2015, 8, 2347.

    16. [16]

      Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. ChemCatChem 2016, 8, 106.

    17. [17]

      Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S. Adv. Mater. 2017,29, 1606000.

    18. [18]

      Gardan, J.; Makke, A.; Recho, N. Procedia Struct. Integr. 2016,2, 144.

    19. [19]

      Takahashi, K.; Setoyama, J. Electron. Commun. Jpn. 2000, 83, 56.

    20. [20]

      Zhou, Z.; Pei, Z. X.; Wei, L.; Zhao, S. L.; Jian, X.; Chen, Y. Energy Environ. Sci. 2020, 13, 3185.

    21. [21]

      Li, Y. M.; Li, C.; Zhang, X.; Wang, Y. Q.; Tan, Y. H.; Chang, S.; Chen, Z.; Fu, G. W.; Kou, Z. K.; Stefan, A.; et al.; Appl. Mater. Today 2022, 29, 101553.

    22. [22]

      Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Adv. Energy Mater. 2019, 9, 1900624.

    23. [23]

      Li, Y. J.; Zhai, J.; Zhao, L. C.; Chen, J. P.; Shang, X. N.; Song, C. M.; Chen, J. C.; Liu, S.; Meng, F. B. J. Solid State Chem. 2019, 276, 19.

    24. [24]

      Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Nat. Mater. 2012, 11, 963.

    25. [25]

      Zou, X. X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148.

    26. [26]

      McCrory, C. C.; Jung, L. S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347.

    27. [27]

      Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J.; et al. Adv. Mater. 2017, 29, 1606570.

    28. [28]

      Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Sci. Rep. 2015, 5, 13801.

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    6. [6]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    7. [7]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    8. [8]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    9. [9]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    18. [18]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(0)
  • Abstract views(78)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return