Citation: Geyang Song,  Dong Xue,  Gang Li. Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides[J]. University Chemistry, ;2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030 shu

Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides

  • Aniline compounds are important organic intermediates and basic chemical raw materials, widely applied in research fields such as pharmaceuticals, agrochemicals, dyes, and functional materials. The development of efficient and versatile synthesis of aniline derivatives is one of the research hotspots that have been attracting much attention. In the past few decades, the study of transition metal-catalyzed synthesis of aniline derivatives from aryl halides has attracted significant attention from chemists due to its advantages of broad substrate applicability, good functional group compatibility, and high reaction selectivity. This review summarizes the research progress in transition metal-catalyzed synthesis of aniline derivatives from aryl halides, including: (1) palladium-catalyzed synthesis of aniline derivatives from aryl halides; (2) copper-catalyzed synthesis of aniline derivatives from aryl halides; (3) nickel-catalyzed synthesis of aniline derivatives from aryl halides.
  • 加载中
    1. [1]

      (b) Lawrence, S. A. Amines: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2004; p. 450.

    2. [2]

      (a) Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. I–XIX.

    3. [3]

      Schranck, J.; Tlili, A. ACS Catal. 2018, 8, 405.

    4. [4]

      (b) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.

    5. [5]

      (a) Bariwal, J.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 9283.

    6. [6]

      (c) Forero-Cortés, P. A.; Haydl, A. M. Org. Process Res. Dev. 2019, 23, 1478.

    7. [7]

      Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10028.

    8. [8]

      (b) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.

    9. [9]

      Vo, G. D; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11049.

    10. [10]

    11. [11]

      (d) Cai, Q.; Zhou, W. Chin. J. Chem. 2020, 38, 879.

    12. [12]

      Green, R. A.; Hartwig, J. F. Org. Lett. 2014, 16, 4388.

    13. [13]

      (e) Yang, Q.; Zhao, Y.; Ma, D. Org. Process Res. Dev. 2022, 26, 1690.

    14. [14]

      Klinkenberg, J. L.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 11830.

    15. [15]

      (b) Gao, J.; Bhunia, S.; Wang, K.; Gan, L.; Xia, S.; Ma, D. Org. Lett. 2017, 19, 2809.

    16. [16]

      Surry, D. S.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 10354.

    17. [17]

      (b) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.

    18. [18]

      Cheung, C. W.; Surry, D. S.; Buchwald, S. L. Org. Lett. 2013, 15, 3734.

    19. [19]

      Schulz, T.; Torborg, C.; Enthaler, S.; Schäffner, B.; Dumrath, A.; Spannenberg, A.; Neumann, H.; Börner, A.; Beller, M. Chem. Eur. J. 2009, 15, 4528.

    20. [20]

      (c) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; et al. Chem. Rev. 2022, 122, 1485.

    21. [21]

      (b) Song, G.; Yang, L.; Li, J.-S.; Tang, W.-J.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. Angew. Chem. Int. Ed, 2021, 60, 21536.

    22. [22]

      Dumrath, A.; Lübbe, C.; Neumann, H.; Jackstell, R.; Beller, M. Chem. Eur. J. 2011, 17, 9599.

    23. [23]

      (c) Song, G.; Nong, D.-Z.; Li, J.-S.; Li, G.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. J. Org. Chem. 2022, 87, 10285.

    24. [24]

      Lundgren, R. J.; Sappong-Kumankumah, A.; Stradiotto, M. Chem. Eur. J. 2010, 16, 1983.

    25. [25]

      Lundgren, R. J.; Peters, B. D.; Alsabeh, P. G.; Stradiotto, M. Angew. Chem. Int. Ed. 2010, 49, 4071.

    26. [26]

      (d) Song, G.; Li, Q.; Nong, D.-Z.; Song, J.; Li, G.; Wang, C.; Xiao, J.; Xue, D. Chem. Eur. J. 2023, 29, e202300458.

    27. [27]

      Alsabeh, P. G.; Lundgren, R. J.; McDonald, R.; Johansson Seechurn, C. C. C.; Colacot, T. J.; Stradiotto, M. Chem. Eur. J. 2013, 19, 2131.

    28. [28]

      Lombardi, C.; Day, J.; Chandrasoma, N.; Mitchell, D.; Rodriguez, M. J.; Farmer, J. L.; Organ, M. G. Organometallics 2017, 36, 251.

    29. [29]

      Lindley, J. Tetrahedron 1984, 40, 1433.

    30. [30]

      (a) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.

    31. [31]

      Lang, F.; Zewge, D.; Houpis, I. N.; Volante, R. P. Tetrahedron Lett. 2001, 42, 3251.

    32. [32]

      Kim, J.; Chang, S. Chem. Commun. 2008, 3052.

    33. [33]

      Xia, N.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 337.

    34. [34]

      Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74, 4542.

    35. [35]

      (a) Fan, M.; Zhou, W.; Jiang, Y.; Ma, D. Org. Lett. 2015, 17, 5934.

    36. [36]

      Wang, D.; Cai, Q.; Ding, K. Adv. Synth. Catal. 2009, 351, 1722.

    37. [37]

      Meng, F.; Zhu, X.; Li, Y.; Xie, J.; Wang, B.; Yao, J.; Wan, Y. Eur. J. Org. Chem. 2010, 6149.

    38. [38]

      Elmkaddem, M. K.; Fischmeister, C.; Thomas, C. M.; Renaud, J.-L. Chem. Commun. 2010, 46, 925.

    39. [39]

      Zeng, X.; Huang, W.; Qiu, Y.; Jiang, S. Org. Biomol. Chem. 2011, 9, 8224.

    40. [40]

      Quan, Z.; Xia, H.; Zhang, Z.; Da, Y.; Wang, X. Chin. J. Chem. 2013, 31, 501.

    41. [41]

      Wu, Z.; Jiang, Z.; Wu, D.; Xiang, H.; Zhou, X. Eur. J. Org. Chem. 2010, 1854.

    42. [42]

      Xu, H.; Wolf, C. Chem. Commun. 2009, 3035.

    43. [43]

      Wu, X.-F.; Darcel, C. Eur. J. Org. Chem. 2009, 4753.

    44. [44]

      Fantasia, S.; Windisch, J.; Scalone, M. Adv. Synth. Catal. 2013, 355, 627.

    45. [45]

      Borzenko, A.; Rotta-Loria, N. L.; MacQueen, P. M.; Lavoie, C. M.; McDonald, R.; Stradiotto, M. Angew. Chem. Int. Ed. 2015, 54, 3773.

    46. [46]

      Green R. A.; Hartwig, J. F. Angew. Chem. Int. Ed. 2015, 54, 3768.

    47. [47]

      Lavoie, C. M.; MacQueen, P. M.; Rotta-Loria, N. L.; Sawatzky, R. S.; Borzenko, A.; Chisholm, A J.; Hargreaves, B. K.V.; McDonald, R.; Ferguson, M. J.; Stradiotto, M. Nat. Commun. 2016, 7, 11073.

    48. [48]

      (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.

    49. [49]

      (a) Li, G.; Yang, L.; Liu, J.-J.; Zhang, W.; Cao, R.; Wang, C.; Zhang, Z.; Xiao, J.; Xue, D. Angew. Chem. Int. Ed, 2021,60, 5230.

    50. [50]

      Song, G.; Nong, D.-Z.; Li, Q.; Yan, Y.; Li, G.; Fan, J.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; et al. ACS Catal. 2022, 12, 15590.

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    10. [10]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    19. [19]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    20. [20]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

Metrics
  • PDF Downloads(1)
  • Abstract views(154)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return