Citation: Ji Qi,  Jianan Zhu,  Yanxu Zhang,  Jiahao Yang,  Chunting Zhang. Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color[J]. University Chemistry, ;2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050 shu

Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color

  • A comprehensive 8-hour chemical experiment was devised around the single crystal-to-single crystal (SCSC) transformation, an emerging method in solid-phase inorganic synthesis. By employing a direct additive process technology, the green complexes (H3O)[K(15C5)2][CuCl4] (1) were synthesized in both powder and macro-single crystal forms. Upon temperature induction, complex 1 transitions to the red complex [K(15C5)2][CuCl3] (2), a shift attributed to the restricted dimerization of [CuCl3]- resulting from steric repulsion effects in the solid phase. Notably, complex 2 can revert back to complex 1 when exposed to hydrochloric steam through an SCSC transformation. This SCSC transformation between complexes 1 and 2 is vividly demonstrated on filter paper, showcasing dynamic color changes, either as texts or drawings. This rapid and visually engaging process is poised to spark students’ curiosity. Furthermore, learners can bridge theory with practice, recognizing that the distinct colors of the two complexes arise from varying coordination numbers of copper (II), grounded in the crystal field theory of inorganic chemistry. Characterization of the complexes was achieved using single crystal X-ray diffraction, powder X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy, confirming the differentiation of the complexes and the successful SCSC transformation. This aspect of the experiment allows students to hone their skills with the Cambridge crystal structure database and enhance their data analysis capabilities, fostering proficiency in operating large-scale instruments safely and accurately. With its streamlined design, modular teaching approach, and cost-effective reagents, this experiment is primed for integration into undergraduate curriculum for chemistry and related disciplines.
  • 加载中
    1. [1]

      Fernandez-Bartolome, E.; Martinez-Martinez, A.; Resines-Urien, E.; Piñeiro-Lopez, L.; Costa, J. S. Coord. Chem. Rev. 2022, 452, 214281.

    2. [2]

      Chaudhary, A.; Mohammad, A.; Mobin, S. M. Cryst. Growth Des. 2017, 17, 2893.

    3. [3]

      Li, Q. Q.; Liu, H.; Zheng, T. T.; Liu, P.; Song, J. X.; Wang, Y. Y. CrystEngComm 2020, 22, 6750.

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      Abrahams, S. C.; Williams, H. J. J. Chem. Phys. 1963, 39, 2923.

    8. [8]

      Maass, G. J.; Gerstein, B. C.; Willett, R. D. J. Chem. Phys. 1967, 46, 401.

    9. [9]

      Willett, R. D.; Dwiggins, C., Jr.; Kruh, R. F.; Rundle, R. E. J. Chem. Phys. 1963, 38, 2429.

    10. [10]

      Gerstein, B. C.; Gehring, F. D.; Willett, R. D. J. Appl. Phys. 1972, 43, 1932.

    11. [11]

      Willett, R. D. J. Chem. Soc., Chem. Comm. 1973, 17, 607.

    12. [12]

      Textor, M.; Dubler, E.; Oswald, H. R. Inorg. Chem. 1974, 13, 1361.

    13. [13]

      Wang, X.; Zhang, M.; Wang, J. Chin. J. Struct. Chem. 1988, 7, 142.

    14. [14]

    15. [15]

      Cai, L. Z.; Jiang, X. M.; Zhang, Z. J.; Guo, P. Y.; Jin, A. P.; Wang, M. S.; Guo, G. C. Inorg. Chem. 2017, 56, 1036.

    16. [16]

    17. [17]

      He, W. W.; Li, S. L.; Lan, Y. Q. Inorg. Chem. Front. 2018, 5, 279.

    18. [18]

      Bruker. APEX3, SAINT and SADABS, Revision 2016/2; Bruker AXS Inc.: Madison, WI, USA, 2016.

    19. [19]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339.

    20. [20]

      Sheldrick, G. M. Acta Crystallogr. 2015,C71, 3.

    21. [21]

      Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3.

    22. [22]

    23. [23]

    24. [24]

      Azmi, N. I.; Zhan, S. Z.; Li, J. H.; Razali, M. R. Inorg. Chim. Acta 2019, 498, 119167.

    25. [25]

      Li, W. Y.; Yang, S.; Li, Y. A.; Li, Q. Y.; Guan, Q.; Dong, Y. B. Dalton Trans. 2019, 48, 16502.

    26. [26]

      Louis, J. F. J. Appl. Cryst. 2012,45, 849.

    27. [27]

    28. [28]

      Brandenburg, K. DIAMOND. Visual Crystal Structure Information System, Revision 4.6.8; Crystal Impact: Bonn, NRW, Germany, 2012.

    29. [29]

      Vasylieva, A.; Doroshenko, I.; Vaskivskyi, Y.; Chernolevska, Y.; Pogorelov, V. J. Mol. Struct. 2018, 1167, 232.

    30. [30]

  • 加载中
    1. [1]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    2. [2]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    3. [3]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    4. [4]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    16. [16]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    19. [19]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(0)
  • Abstract views(71)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return