Citation: Hongyi Zhang,  Junyao He,  Zhihong Shi. Introduction of the Concept of Greenness into Instrumental Analysis Course[J]. University Chemistry, ;2023, 38(11): 293-300. doi: 10.3866/PKU.DXHX202304048 shu

Introduction of the Concept of Greenness into Instrumental Analysis Course

  • In order to fulfill organic combination of professional goal and moral goal from the course of instrumental analysis and student education, and unification of green analytical chemistry from discipline concept and the social responsibility of green development, greenness the evaluation index for describing the greening of analytical methods was introduced into our instrumental analysis course. Firstly, the development of green chemistry, green analytical chemistry and green liquid chromatography was briefly covered. Secondly, various methods for quantitative expression of greenness were presented, and the two methods of HPLC-EAT and CHEMS-1 were emphasized, involving their usages, scope of application and limitations. Finally, the two methods were employed for calculating the greenness values of the liquid chromatography methods selected from literatures, and the correlation analysis between the calculation results from the two methods were done. It was shown that the data from the two methods were not the same, but their correlation was good. Both HPLC-EAT and CHEMS-1were capable of measuring greenness of liquid chromatography, and the two methods were easy for students to grasp. We would like to recommend that the concept of greenness and together with the two methods for calculating greenness should be adopted in instrumental analysis textbooks in the future.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      Chang, C. C.; Zhang, D.; Wang, Z.; Chen, B.-H. J. Chromatogr. A 2019, 1585, 82.

    7. [7]

      Betz, J. M.; Brown, P. N.; Roman, M. C. Fitoterapia 2011, 82 (1), 44.

    8. [8]

      Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39 (1), 301.

    9. [9]

      Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Chem. Soc. Rev. 2010, 39,2869.

    10. [10]

      Salvador, A.; Chisvert, A. Anal. Chim. Acta 2005, 537 (1-2), 15.

    11. [11]

      Hemdan, A.; Magdy, R.; Farouk, M. J. Sep. Sci. 2018, 41 (16), 3213.

    12. [12]

      Lawrence, H. K.; Gron, L. U.; Young, J. L. Chem. Rev. 2007, 107, 2695.

    13. [13]

      Gaber, Y.; Tornvall, U.; Kumar, M. A.; Amin, M. A.; Hatti-Kaul, R. Green Chem. 2011, 13, 2021.

    14. [14]

      Tobiszewski, M.; Namiesnik, J. Ecotox. Environ. Safe. 2015, 120, 169.

    15. [15]

    16. [16]

      Welch, C. J.; Wu, N.; Biba, M.; Hartman, R.; Brkovic, T.; Gong, X.; Helmy, R.; Schafer, W.; Cuff, J.; Pirzada, Z.; et al. TrAC Trends Anal. Chem. 2010, 29, 667.

    17. [17]

      Poliakoff, M.; Fotzpatrick, J. M.; Farren, T. R.; Anastas P. T. Science 2002, 297, 807.

    18. [18]

    19. [19]

      Keith, L. H.; Gron, L. U.; Young, J. L. Chem. Rev. 2007, 107, 2695.

    20. [20]

      [2023-05-20]. http://www.metzger.chemie.uni-oldenburg.de/eatos/english.htm

    21. [21]

      [2023-05-20]. https://pubs.rsc.org/en/Content/ArticleLanding/2011/GC/c0gc00667j#!divAbstract

    22. [22]

      Koller, G.; Fischer, U.; Hungerbühler, K. Ind. Eng. Chem. Res. 2000, 39, 960.

    23. [23]

      Swanson, M. B.; Davis, G. A.; Kincaid, L. E.; Schultz, T. W.; Bartmess, J. E.; Jones, S. L.; George, E. L. Environ. Toxicol. Chem. 1997, 16, 372.

    24. [24]

      Im, S. H.; Ryoo, J. J. J. Chromatogr. A 2009, 1216, 2339.

    25. [25]

      Heinig, K.; Vogt, C.; Werner, G. Anal. Chem. 1998, 70, 1885.

    26. [26]

      Rombaut, R.; De Clercq, N.; Fouber, I.; Koen, D. J. Am. Oil Chem. Soc. 2009, 86 (1), 19.

    27. [27]

      Pei, M.; Zhu, X.; Huang, X. J. Chromatogr. A 2018, 1531, 13.

    28. [28]

      Park, H. S.; Ryu, H. R.; Rhee, C. K. Talanta 2006, 70, 481.

    29. [29]

      Park, H. S.; Rhee, C. K. J. Chromatogr. A 2004, 1046, 289.

    30. [30]

  • 加载中
    1. [1]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    2. [2]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    3. [3]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    4. [4]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    5. [5]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    6. [6]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    7. [7]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    8. [8]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    12. [12]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    15. [15]

      Ruiyuan Xu Yuxin Wang Yuru Zhang Wanmei Li . Who Destroyed Snowflake Castle. University Chemistry, 2024, 39(9): 224-228. doi: 10.12461/PKU.DXHX202311056

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    20. [20]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

Metrics
  • PDF Downloads(1)
  • Abstract views(599)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return