Citation: Xiaojun Zhao,  Shengli Gao,  Zhihong Liu. Progress in Preparation, Properties and Applications of Metal Borides[J]. University Chemistry, ;2023, 38(11): 95-105. doi: 10.3866/PKU.DXHX202302053 shu

Progress in Preparation, Properties and Applications of Metal Borides

  • Corresponding author: Xiaojun Zhao,  Zhihong Liu, 
  • Received Date: 21 February 2023

  • The amount of charge transfer between metal and boron atoms determines the bonding mode, bonding strength and characteristics of chemical bonds in metal borides (MBs). The preparation, crystal structures and applications of MBs have been a hot topic in the field of chemistry and materials. In view of the extensive application prospect and the limited introduction of MBs in inorganic chemistry textbooks at domestic and abroad, in this work, combined with the references and the latest research results, we focus on the structure, properties, preparation and applications of alkali/alkaline earth metal borides, transition metal borides and rare earth metal borides. This work expands the in-depth introduction of MBs in teaching, helps improve students' knowledge horizons, and reflects the role of scientific research in promoting the reform of undergraduate teaching content.
  • 加载中
    1. [1]

      Akopov, G.; Yeung, M. T.; Kaner, R. B. Adv. Mater. 2017, 29 (21), 1604506.

    2. [2]

      Albert, B.; Hofmann, K. 10 Metal Borides:Versatile Structures and Properties. In Handbook of Solid State Chemistry; Wiley-VCH Verlag GmbH&Co. KGaA:Weinheim, Germany, pp. 435-453.

    3. [3]

      Pu, C.-Y.; Yu, R.-M.; Wang, T.; Xüe, Z.-Y.; Zhu, Y.-S.; Zhou, D.-W. Chinese Phys. B 2021, 30 (1), 537.

    4. [4]

      Hermann, A.; McSorley, A.; Ashcroft, N. W.; Hoffmann, R. J. Am. Chem. Soc. 2012, 134 (45), 18606.

    5. [5]

    6. [6]

      Chen, H.; Zou, X. Inorg. Chem. Frontiers 2020, 7 (11), 2248.

    7. [7]

      Kiessling, R.; Samuelson, O.; Lindstedt, G.; Kinell, P.-O. Acta Chem. Scand. 1950, 4, 146.

    8. [8]

      Gvozdetskyi, V.; Hanrahan, M. P.; Ribeiro, R. A.; Kim, T. H.; Zhou, L.; Rossini, A. J.; Canfield, P. C.; Zaikina, J. V. Chem-Eur. J. 2019, 25 (16), 4123.

    9. [9]

      Pu, Z. L.; Zhang, T.; Liu, G.; Gauthier, X.; Chen, M. A.; Sun, S. Small Methods 2021, 5 (10), e2100699.

    10. [10]

      Kapfenberger, C.; Hofmann, K.; Albert, B. Solid State Sci. 2003, 5 (6), 925.

    11. [11]

      He, X.; Dong, X.; Wu, Q.; Zhao, Z.; Zhu, Q.; Oganov, A. R.; Tian, Y.; Yu, D.; Zhou, X.; Wang, H. Phys. Rev. B 2018, 97 (10), 100102.

    12. [12]

      Albert, B.; Hillebrecht, H. Angew. Chem. Int. Ed. 2009, 48 (46), 8640.

    13. [13]

      Wang, D.; Zhou, H.; Hu, C.; Zhong, Y.; Oganov, A. R.; Rao, G. Phys. Chem. Chem. Phys. 2017, 19 (12), 8471.

    14. [14]

      Wörle, D.; Nesper, R. Angew. Chem. Int. Ed. 2000, 39 (13), 2439.

    15. [15]

      Ren, K.; Yan, Y.; Zhang, Z.; Sun, M.; Schwingenschlögl, U. Appl. Surface Sci. 2022, 604, 154317.

    16. [16]

      Dudenkov, I. V.; Solntsev, K. A. Russian J. Inorg. Chem. 2009, 54 (7), 1105.

    17. [17]

      Naslain, R.; Kasper, J. S. J. Solid State Chem. 1970, 1 (2), 150.

    18. [18]

      Albert, B. Angew. Chem. Inter. Ed. 1998, 37 (8), 1117.

    19. [19]

      Chang, J.; Zhang, T.; Ge, N. J. Solid State Chem. 2021, 296, 121962.

    20. [20]

      Morito, H.; Shibano, S.; Yamada, T.; Ikeda, T.; Terauchi, M.; Belosludov, R. V.; Yamane, H. Solid State Sci. 2020, 102, 106166.

    21. [21]

      Etourneau, J.; Ammar, A.; Villesuzanne, A.; Villeneuve, G.; Chevalier, B.; Whangbo, M. H. Inorg. Chem. 2003, 42 (14), 4242.

    22. [22]

      Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Nature 2001, 410 (6824), 63.

    23. [23]

      Liu, H.; Zhang, L.; Zhao, G.; Feng, G.; Min, G. Ceram. Int. 2015, 41 (6), 7745.

    24. [24]

      Dorneles, L. S.; Venkatesan, M.; Moliner, M.; Lunney, J. G.; Coey, J. M. D. Appl. Phys. Lett. 2004, 85 (26), 6377.

    25. [25]

      Chen, X.; Zhang, Y.; Qu, J.; Qu, X.; Zhang, B.; Zhao, Z.; Zhao, Y.; Wang, D.; Yin, H. Sep. Purif. Technol. 2022, 285, 120391.

    26. [26]

      Tynell, T.; Aizawa, T.; Ohkubo, I.; Nakamura, K.; Mori, T. J. Cryst. Growth 2016, 449, 10.

    27. [27]

    28. [28]

      Li, C.; Long, X.; Zhang, Q.; Li, T.; Wu, J.; Yao, Y. Nanoscale 2019, 11 (24), 11457.

    29. [29]

    30. [30]

      Young, D. P.; Hall, D.; Torelli, M. E.; Fisk, Z.; Sarrao, J. L.; Thompson, J. D.; Ott, H. R.; Oseroff, S. B.; Goodrich, R. G.; Zysler, R. Nature 1999, 397 (6718), 412.

    31. [31]

      Li, L.-H.; Chen, L.; Li, J.-Q.; Wu, L.-M. J. Phys. Chem. C 2009, 113 (34), 15384.

    32. [32]

      Kanakala, R.; Chitrada, K.; Raja, K. S. Mater. Lett. 2016, 170, 118.

    33. [33]

      Yin, H.; Tang, D.; Mao, X.; Xiao, W.; Wang, D. J. Mater. Chem. A 2015, 3 (29), 15184.

    34. [34]

      Chen, X. L.; Tu, Q. Y.; He, M.; Dai, L.; Wu, L. J. Phys-Condens. Mat. 2001, 13 (29), L723.

    35. [35]

      Chung, H.-Y.; Weinberger, M. B.; Levine, J. B.; Kavner, A.; Yang, J.-M.; Tolbert, S. H.; Kaner, R. B. Science 2007, 316 (5823), 436.

    36. [36]

      Li, Q.; Zhou, D.; Zheng, W.; Ma, Y.; Chen, C. Phys. Rev. Lett. 2013, 110 (13), 136403.

    37. [37]

      Jiang, C.; Pei, Z.; Liu, Y.; Xiao, J.; Gong, J.; Sun, C. Phys. Status Solidia 2013, 210 (6), 1221.

    38. [38]

      Malinovskis, P.; Palisaitis, J.; Persson, P. O. Å.; Lewin, E.; Jansson, U. J. Vacuum Sci. Technol. A 2016, 34 (3), 031511.

    39. [39]

      Mayrhofer, P. H.; Mitterer, C.; Wen, J. G.; Greene, J. E.; Petrov, I. Appl. Phys. Lett. 2005, 86 (13), 131909.

    40. [40]

      Labov, S.; Bowyer, S.; Steele, G. Appl. Opt. 1985, 24 (4), 576.

    41. [41]

      Vrubel, H.; Hu, X. Angew. Chem. Int. Ed. 2012, 51 (51), 12703.

    42. [42]

      Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Chem. Rev. 2013, 113 (10), 7981.

    43. [43]

    44. [44]

      Osaka, T.; Ishibashi, H.; Endo, T.; Yoshida, T. Electrochim. Acta 1981, 26 (3), 339.

    45. [45]

      Bai, Y.; Wu, Y.; Zhou, X.; Ye, Y.; Nie, K.; Wang, J.; Xie, M.; Zhang, Z.; Liu, Z.; Cheng, T.; et al. Nat. Commun. 2022, 13 (1), 6094.

    46. [46]

      Lourie, O. R.; Jones, C. R.; Bartlett, B. M.; Gibbons, P. C.; Ruoff, R. S.; Buhro, W. E. Chem. Mater. 2000, 12 (7), 1808.

    47. [47]

    48. [48]

      Steven, A. High Energy Density Boride Batteries:EP1135818A4[P]. U. S. Patent. 1999-09-07.

    49. [49]

    50. [50]

      Zhang, J.; Liu, Y.; Li, X.; Zeng, Z.; Cheng, X.; Wang, Y.; Tu, W.; Pan, M. J. Power Sources 2019, 419, 6.

    51. [51]

      Wang, Y. D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Electrochem. Commun. 2004, 6 (8), 780.

    52. [52]

      Zhou, W. C.; Yang, H. X.; Shao, S. Y.; Ai, X. P.; Cao, Y. L. Electrochem. Commun. 2006, 8 (1), 55.

    53. [53]

      Chen, Y.; Zhou, T.; Li, L.; Pang, W. K.; He, X.; Liu, Y.-N.; Guo, Z. ACS Nano 2019, 13 (8), 9376.

    54. [54]

      Chai, S.; Zhang, L.; Zhang, W.; Bao, X.; Guo, Y.; Han, X.; Ma, X. Appl. Clay Sci. 2022, 218, 106426.

    55. [55]

      Li, Z.; Li, P.; Meng, X.; Lin, Z.; Wang, R. Adv. Mater. 2021, 33 (42), 2102338.

    56. [56]

      Guan, B.; Zhang, Y.; Fan, L.; Wu, X.; Wang, M.; Qiu, Y.; Zhang, N.; Sun, K. ACS Nano 2019, 13 (6), 6742.

    57. [57]

      Guan, B.; Fan, L.; Wu, X.; Wang, P.; Qiu, Y.; Wang, M.; Guo, Z.; Zhang, N.; Sun, K. J. Mater. Chem. A 2018, 6 (47), 24045.

    58. [58]

      Shrshr, A. E.; Dong, Y.; Al-Tahan, M. A.; Kang, X.; Guan, H.; Zheng, X.; Zhang, J. J. Alloys. Compds. 2022, 910, 164917.

    59. [59]

      Wang, B.; Wang, L.; Zhang, B.; Kong, Z.; Zeng, S.; Zhao, M.; Qian, Y.; Xu, L. Energy Storage Mater. 2022, 45, 130.

    60. [60]

      Guo, Z.; Zhao, Y.; Miao, Y.; Wang, D.; Zhang, D. ACS Appl. Energy Mater. 2022, 5 (9), 11844.

    61. [61]

      Ozisik, H.; Deligoz, E.; Colakoglu, K.; Surucu, G. Inter. J. Mater. Res. 2013, 104 (9), 858.

    62. [62]

      Novikov, V. V.; Mitroshenkov, N. V.; Morozov, A. V.; Matovnikov, A. V.; Avdashchenko, D. V. J. Applied Phys. 2012, 111 (6), 063907.

    63. [63]

      Yusa, H.; Iga, F.; Fujihisa, H. Inorg. Chem. 2022, 61 (5), 2568.

    64. [64]

      Tang, S.; Tang, J.; Okunishi, E.; Ninota, Y.; Yasuhara, A.; Uzuhashi, J.; Ohkubo, T.; Takeguchi, M.; Yuan, J.; Qin, L.-C. Mater. Today 2022, 57, 35.

    65. [65]

      Sugavaneshwar, R. P.; Handegård, Ø. S.; Doan, A. T.; Ngo, T. D.; Tran, T. P.; Ngo, H. D.; Dao, T. D.; Ishii, S.; Otani, S.; Nagao, T. Adv. Opt. Mater. 2022, 10 (8), 2101787.

    66. [66]

      Wang, Z.; Han, W.; Kuang, Q.; Fan, Q.; Zhao, Y. Adv. Powder Technol. 2020, 31 (2), 595.

    67. [67]

    68. [68]

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    6. [6]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    7. [7]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    8. [8]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    11. [11]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    16. [16]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(10)
  • Abstract views(801)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return