Citation: Jin Du,  Yiling Shi,  Anna Tang,  Deming Kong. Chiral Separation of Amino Acids by Chromatography[J]. University Chemistry, ;2023, 38(10): 218-224. doi: 10.3866/PKU.DXHX202301022 shu

Chiral Separation of Amino Acids by Chromatography

  • Corresponding author: Anna Tang, tanganna@nankai.edu.cn
  • Received Date: 26 January 2023
    Revised Date: 13 February 2023

  • Amino acids with different optical activities and stereo-configurations have different physiological activities and effects. Therefore, it is important to achieve the chiral separation of amino acids effectively. Chromatography is a commonly used method for the chiral separation and detection of amino acids, and is characterized by high separation efficiency, high speed, sensitivity, low cost, and environmental friendliness. In this paper, we review the recent progress of chromatographic methods in the chiral separation and analysis of amino acids and provide an outlook on their development trends.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Li, X.; Wang, Y. Chiral Separations, Humana:New York, NY, USA, 2019; pp. 159-169.

    4. [4]

      Zhang, S.; Zheng, Y.; An, H.; Aguila, B.; Yang, C. X.; Dong, Y.; Xie, W.; Cheng, P.; Zhang, Z.; Chen, Y.; et al. Angew. Chem., Int. Ed. 2018, 57, 16754.

    5. [5]

      Qian, H. L.; Liu, F.; Liu, X.; Yang, C.; Yan, X. P. Anal. Bioanal. Chem. 2022, 414, 5255.

    6. [6]

      Frank, H.; Nicholson, G. J.; Bayer, E. J Chromatogr. Sci. 1977, 15, 174.

    7. [7]

      Menestrina, F.; Grisales, J. O.; Castells, C. B. Microchem. J. 2016, 128, 267.

    8. [8]

      Xie, S. M.; Zhang, Z. J.; Wang, Z. Y.; Yuan, L. M. J. Am. Chem. Soc. 2011, 133, 11892.

    9. [9]

      Zhang, J. H.; Xie, S. M.; Chen, L. B.; Wang, J.; He, P. G.; Yuan, L. M. Anal. Chem. 2015, 87, 7817.

    10. [10]

      Sethi, N.; Anand, A.; Jain, G.; Srinivas, K.; Chandrul, K. Chronicles Young Sci. 2010, 1, 12.

    11. [11]

      Lajkó, G.; Ilisz, I.; Tóth, G.; Fülöp, F.; Lindner, W.; Péter, A. J. Chromatogr. A 2015, 1415, 134.

    12. [12]

      Lipka, E.; Dascalu, A. E.; Messara, Y.; Tsutsqiridze, E.; Farkas, T.; Chankvetadze, B. J. Chromatogr. A 2019, 1585, 207.

    13. [13]

      Jorgenson, J. W.; Lukacs, K. D. Clin. Chem. 1981, 27, 1551.

    14. [14]

      Piehl, N.; Ludwig, M.; Belder, D. Electrophoresis 2004, 25, 3848.

    15. [15]

      Pataj, Z.; Ilisz, I.; Berkecz, R.; Misicka, A.; Tymecka, D.; Fülöp, F.; Armstrong, D. W.; Péter, A. J. Chromatogr. Sci. 2015, 31, 3688.

    16. [16]

      Wang, A.; Liu, K.; Tian, M.; Yang, L. Anal. Chem. 2022, 94, 9252.

    17. [17]

      Khatri, S.; Memon, N.; Khatri, Z.; Ahmed, F. Acta Chromatogr. 2020, 32, 210.

    18. [18]

      Xiong, Q.; Jin, J.; Lv, L.; Bu, Z.; Tong, S. J. Sep. Sci. 2018, 41, 1479.

    19. [19]

    20. [20]

    21. [21]

      Aydoğan, C. Chirality 2018, 30, 1144.

    22. [22]

    23. [23]

      Šimek, P.; Hušek, P.; Zahradníčková, H. Amino Acid Analysis:Methods and Protocols; Humana:New York, NY, USA, 2019; pp. 237-251.

    24. [24]

      Xie, S.; Wang, B.; Zhang, X.; Zhang, J.; Zhang, M.; Yuan, L. Chirality 2014, 26, 27.

    25. [25]

    26. [26]

      Yue, C. Y.; Ding, G. S.; Liu, F. J.; Tang, A. N. J. Chromatogr. A 2013, 1311, 176.

    27. [27]

      Miller, L.; Yue, L. Chirality 2020, 32, 981.

    28. [28]

      Lu, Y.; Zhang, H.; Zhu, Y.; Marriott, P. J.; Wang, H. Adv. Funct. Mater. 2021, 31, 2101335.

    29. [29]

      Cheng, Q.; Ma, Q.; Pei, H.; Mo, Z. Sep. Purif. Technol. 2022, 292, 121034.

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    3. [3]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    9. [9]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    10. [10]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    13. [13]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    17. [17]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    20. [20]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

Metrics
  • PDF Downloads(5)
  • Abstract views(769)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return