Citation: Jianzhang Pan,  Mengting Zhang,  Xiaoyang Zhang,  Yucheng Liao,  Xinran Xu,  Qun Fang. Open Laboratory Teaching Design of Instrumental Analysis: Construction of a Modular Laser-Induced Fluorescence Detection System Based on LEGO Blocks[J]. University Chemistry, ;2023, 38(4): 291-299. doi: 10.3866/PKU.DXHX202301019 shu

Open Laboratory Teaching Design of Instrumental Analysis: Construction of a Modular Laser-Induced Fluorescence Detection System Based on LEGO Blocks

  • Received Date: 26 January 2023

  • In this work, a modular Laser-induced fluorescence (LIF) detection system LEGO LIF for undergraduate laboratory course was developed based on optical modules constructed from commercially available LEGO blocks and 3D-printed blocks. The system was applied to the laboratory teaching of undergraduate instrumental analysis, and the students were instructed to build the LIF system based on functional building blocks and apply it to the determination of sodium fluorescein solutions. The system is characterized by low cost, easy construction and flexible operation. The way of modular construction greatly reduced the threshold of instrument construction, and can be completed within 3 h by undergraduate students without experience. The introduction of the LIF modular construction design into the open teaching session can inspire students’ interest and enthusiasm in the instrumental analysis course, and help deepen students’ understanding of fluorescence analysis principles and LIF detection system structure, exercise students’ hands-on ability as well as improve students’ ability to find and solve problems during the process of system construction.
  • 加载中
    1. [1]

      Xi, Q. Y.; Shi, M.; Geng, X. H.; Wang, X. N.; Guan, Y. F. Anal. Chem. 2020, 92 (13), 8680.

    2. [2]

      Zhang, W. M.; Liu, L.; Zhang, Q.; Zhang, D. T.; Hu, Q.; Wang, Y. N.; Wang, X. Y.; Pu, Q. S.; Guo, G. S. Chem. Commun. (Camb.) 2020, 56 (16), 2423.

    3. [3]

      Xesús, F.; Beatriz, I. V.; Antonio, I.; Jesús C.; Cristina, A. F.; Alberto, C. Food Anal. Methods 2010, 3 (3), 138.

    4. [4]

      Takashi, K. Chem. Rec. 2019, 19, 452.

    5. [5]

      Zhu, X. R.; Liu, B. X.; Su, S. S.; Wang, B.; Bai, Y.; Huang, H. W.; Liu, X. B.; Cheng, X.; Wang, X. H.; Zhu, L. X.; et al. Talanta 2020, 206, 120200.

    6. [6]

      Fang, B. Y.; Yao, M. H.; Wang, C. Y.; Wang, C. Y.; Zhao, Y. D.; Chen, F. Colloids Surf. B Biointerfaces 2016, 140, 233.

    7. [7]

      Peng, X. D.; Xu, D. H.; Xue, J. J.; Mei, X. T.; Lv, J. Y.; Xu, S. B. Int. J. Pharm. 2007, 337, 25.

    8. [8]

      Arabi, D. S.; Abdel-Salam, Z. A.; Goda, H. A.; Harith, M. A. J. Lumin. 2018, 194, 594.

    9. [9]

      Fang, X. X.; Li, H. Y.; Pan, J. Z.; Fang, Q. Talanta 2016, 150, 135.

    10. [10]

      Haverkamp, N.; Holz, C.; Ubben, M.; Pusch, A. Phys. Teach. 2020, 58 (9), 652.

    11. [11]

      Théo, L.; Jasmine, S. F.; Myriam, T.; Hung, V. P.; Peter, C. H.; Thanh, D. M. Anal. Chem. Acta 2020, 1135, 47.

    12. [12]

      Alexander, A. B.; Sarah, R. M.; Hyun, H. J.; Pedro, M.; Leo, A. J.; Edward, M. M.; Christopher, J. W.; Eric, V. A. J. Org. Chem. 2020, 85 (15), 9447.

    13. [13]

      Marco, C.; James, T. L.; Monique, S. S.; Cassandra, L. Q. Anal. Chem. 2020, 92 (2), 1687.

    14. [14]

      Zhang, M. T.; Peng, Y. M.; Pan, J. Z.; Fang, X. X.; Li, H. Y.; Zhang, X. Y.; Liao, Y. C.; Yao, J. K.; Wu, M. L.; Yao, Y. Y.; et al. Talanta 2022, 239, 123063.

    15. [15]

      Jung, R. R.; Tae, Y. D. IEEE Trans. Consumr. Electro. 2016, 62 (2), 144.

    16. [16]

      Ren, K.; Liu, S. Y.; Xie, X. F.; Du, H. B.; Hou, L. F.; Jing, L. F.; Yang, D.; Zhao, Y.; Yan, J.; Yang, Z. W.; et al. J. Sci. Rep. 2019, 9, 5050.

    17. [17]

      Peng, Y. M.; Pan, J. Z.; Fang, Q. Talanta 2021, 230, 122329.

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    4. [4]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    5. [5]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    6. [6]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    7. [7]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    8. [8]

      Qizhi Yao Gu Jin Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071

    9. [9]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    14. [14]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    15. [15]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    16. [16]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    19. [19]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(7)
  • Abstract views(877)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return