Citation: Weiqing Zhang,  Guping Hu. Comparison of Common Classical Analytical Models for Mesoporous Adsorption[J]. University Chemistry, ;2023, 38(9): 105-113. doi: 10.3866/PKU.DXHX202212053 shu

Comparison of Common Classical Analytical Models for Mesoporous Adsorption

  • The scientific characterization of the properties of mesoporous materials is a key link for their development and application. In this paper, the development history, application scope, and characteristics of mesoporous adsorption and commonly used classical analytical models are briefly introduced by tabular comparison. To systematically understand the classical mesoporous analysis methods in physical adsorption, they were classified into four categories: modeled, model-free, completely model-free, and reverse methods. Then, these methods and three frequently-used analytical software for mesoporous adsorption were compared and analyzed. This has reference value for technicians of adsorption instrument management as well as for teaching and research of mesoporous materials.
  • 加载中
    1. [1]

      Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60 (2), 309.

    2. [2]

    3. [3]

      Brunauer, S.; Mikhail, R. S.; Bodor, E. E. J. Colloid Interface Sci. 1967, 24 (4), 451.

    4. [4]

      Shull, C. G. J. Am. chem. Soc. 1948, 70, 1405.

    5. [5]

    6. [6]

      Cranston, R. Adv. Catal. 1957, 9, 143.

    7. [7]

      Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373.

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

      Thomson, W. Phil. Mag. 1871, 42, 448.

    14. [14]

      Zsigmondy, A. Z. Anorg. Chem. 1911, 71, 356.

    15. [15]

      Foster, A. G. Faraday Soc. 1932, 28, 645.

    16. [16]

      Harkins, W. D.; Jura, G. J. Am. Chem. Soc. 1944, 66 (8), 1366.

    17. [17]

      Wheeler, A. Adv. Catal. 1951, 3, 249.

    18. [18]

      Pierce, C. J. Phys. Chem. 1953, 57 (2), 149.

    19. [19]

      Montarnal, R. J. Phys. et Rad. 1953, 12, 732.

    20. [20]

      Rouquerol, F.; Rouquerol, J.; Sing, K. S. W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids, 2nd ed.; Elsevier-Academic Press:Amsterdam, The Netherlands, 2014.

    21. [21]

      Innes, W. B. Anal. Chem. 1957, 29 (7), 1069.

    22. [22]

      Lippens, B. C.; de Boer, J. H. J. Catal. 1964, 3, 44.

    23. [23]

      Lippens, B. C.; de Boer, J. H. J. Catal. 1965, 4, 319.

    24. [24]

      de Boer, J. H.; Lippens, B. C.; Linsen, B. G.; Broekhoff, J. C. P.; van den Heuvel, A.; Osinga, T. J. J. Colloid Interface Sci. 1966, 21, 405.

    25. [25]

      Dollimore, D.; Heal, G. R. J. Appl. Chem. 1964, 14,109.

    26. [26]

      Dollimore, D.; Heal, G. R. J. Colloid Interface Sci. 1970, 33 (4), 508.

    27. [27]

      Roberts, B. F. J. Colloid Interface Sci. 1967, 23 (2), 266.

    28. [28]

      Broekhoff, J. C. P.; de Boer, J. H. J. Catal. 1967, 9 (1), 15.

    29. [29]

    30. [30]

      Broekhoff, J. C. P.; Bodor, E. E. J. Colloid Interface Sci. 1967, 24 (4), 451.

    31. [31]

      Broekhoff, J. C. P.; Bodor, E. E. J. Colloid Interface Sci. 1967, 25 (3), 353.

    32. [32]

      Dollimore, D.; Heal, G. R. J. Colloid Interface Sci. 1970, 42 (2), 233.

    33. [33]

    34. [34]

    35. [35]

    36. [36]

      Kruk, M.; Jaroniec, M. Langmuir 1997, 13, 6267.

    37. [37]

      Lukens, W.W.; Schmidt-Winkel, P.; Zhao, D. Y.; Feng, J. L.; Stucky, G. D. Langmuir 1999, 15, 5403.

    38. [38]

      Kruk, M.; Jaroniec, M. Langmuir 1997, 13, 6267.

    39. [39]

      Rocha, J. V.; Barrera, D.; Sapag, K. Top Catal. 2011, 54, 121.

    40. [40]

      Rocha, J. V.; Barrera, D.; Sapag, K. Micropor. Mesopor. Mat. 2014, 200, 68.

    41. [41]

      Broekhoff, J. C. P.; de Boer, J. H. J. Catal. 1968, 10 (2), 153.

    42. [42]

    43. [43]

      Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Stud. Surf. Sci. Catal. 2007, 160, 49.

    44. [44]

      Osterrieth, J.; Rampersad, J.; Madden, D.; Rampersad, N.; Storic, L.; Connolly, B.; Allendorf, M. D.; Stavila, V.; Snider, J. L; Ameloot, R.; et al. Adv. Mater. 2022, 2201502.

    45. [45]

    46. [46]

      Sonwane, C. G.; Bhatia, S. K. Stud. Surf. Sci. Catal. 2000, 129, 607.

    47. [47]

      Groen, J. C.; Peffer, L.; Pérez-Ramírez. J. Micropor. Mesopor. Mat. 2003, 60, 1.

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    9. [9]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    15. [15]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    18. [18]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

Metrics
  • PDF Downloads(3)
  • Abstract views(750)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return