Citation: Anna Tang,  Yiling Shi,  Jin Du,  Deming Kong. Application of Hyphenated Technique in Element Speciation Analysis[J]. University Chemistry, ;2023, 38(9): 98-104. doi: 10.3866/PKU.DXHX202211088 shu

Application of Hyphenated Technique in Element Speciation Analysis

  • This paper investigates the significance of element speciation analysis, the various hyphenated techniques used in element speciation analysis, and their application in real samples. This involves a variety of separation technologies, such as high-performance liquid chromatography, ion chromatography, size exclusion chromatography, gas chromatography, and capillary electrophoresis, as well as various detection methods, such as inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, atomic fluorescence spectrometry, and atomic absorption spectrometry. Based on this, we developed teaching experiments, combined theory with practice, and further strengthened students' understanding, mastery, and application of knowledge.
  • 加载中
    1. [1]

      Song, X. C.; Huang, X. J. Advances in Sample Preparation 2022, 2, 100019.

    2. [2]

      Song, X. C.; Luo, Q.; Huang, X. J. Anal. Chim. Acta 2022, 1223, 340175.

    3. [3]

      Chen, Y. C.; Jiang, S. J. J. Anal. At. Spectrom. 2021, 36, 938.

    4. [4]

    5. [5]

      Grotti, M.; Terol, A.; Todolí, J. L. Trac-Trend Anal. Chem. 2014, 61, 92.

    6. [6]

    7. [7]

      Nong, Q. Y.; Dong, H. Z.; Liu, Y. Q.; Liu, L. H.; He, B.; Huang, Y. S.; Jiang, J.; Luan, T. G.; Chen, B. W.; Hu, L. G. Chemosphere 2021, 263, 128110.

    8. [8]

      Proch, J.; Niedzielski, P. Talanta 2021, 231, 122403.

    9. [9]

      Ochsenkuhn-Petropoulou, M.; Michalke, B.; Kavouras, D.; Schramel, P. Anal. Chim. Acta 2003, 478, 219.

    10. [10]

      Spanu, D.; Monticelli, D.; Binda, G.; Dossi, C.; Rampazzi, L.; Recchia, S. J. Hazard. Mater. 2021, 412, 125280.

    11. [11]

      Iwai-Shimada, M.; Kobayashi, Y.; Isobe, T.; Nakayama, S. E.; Sekiyama, M.; Taniguchi, Y.; Yamazaki, S.; Michikawa, T.; Oda, M.; Mitsubuchi, H.; et al. Toxics 2021, 9, 82.

    12. [12]

    13. [13]

    14. [14]

      Linhart, O.; Kolorosová-Mrázová, A.; Kratzer, J.; Hraníček, J.; Červený, V. Anal. Lett. 2019, 52, 613.

    15. [15]

      Cossart, T.; Garcia-Calleja, J.; Worms, I. A. M.; Tessier, E.; Kavanagh, K.; Pedrero, Z.; Amouroux, D.; Slaveykova, V. I. Environ. Pollut. 2021, 288, 117771.

    16. [16]

      Pinel-Raffaitin, P.; Rodriguez-Gonzalez, P.; Ponthieu, M.; Amouroux, D.; Le Hecho, I.; Mazeas, L.; Donard, O. F. X.; Potin-Gautier, M. J. Anal. At. Spectrom. 2007, 22, 258.

    17. [17]

      Azemard, S.; Vassileva, E. Talanta 2021, 232,122492.

    18. [18]

      Górecki, J. Measurement 2018, 117, 419.

    19. [19]

      Zeng, Y.; Xu, K.; Hou, X.; Jiang, X. Microchem. J. 2014, 114, 16.

    20. [20]

      Aguerre, S.; Pecheyran, C.; Lespes, G.; Krupp, E.; Donard, O. F. X.; Potin-Gautier, M. J. Anal. At. Spectrom. 2001, 16, 1429.

    21. [21]

      Chamoun, J.; Hagège, A. Radiochim. Acta 2005, 93, 659.

    22. [22]

      Shuai, P. Y.; Yang, X. J.; Qiu, Z. Q.; Wu, X. H.; Zhu, X.; Pokhrel, G. R.; Fu, Y. Y.; Ye, H. M.; Lin, W. X.; Yang, G. D. J. Sep. Sci. 2016, 39, 3239.

    23. [23]

      Deng, B. Y.; Xiao, Y.; Xu, X. S.; Zhu, P. C.; Liang, S. J.; Mo, W. M. Talanta 2009, 79, 1265.

    24. [24]

      Sanchez-Rodas, D.; Corns, W. T.; Chen, B.; Stockwell, P. B. J. Anal. At. Spectrom. 2010, 25, 933.

    25. [25]

      Yan, X. P.; Yin, X. B.; Jiang, D. Q.; He, X. W. Anal. Chem. 2003, 75, 1726.

    26. [26]

      Deng, B.; Li, X.; Zhu, P.; Xu, X.; Xu, Q.; Kang, Y. Electrophoresis 2008, 29, 1534.

    27. [27]

    28. [28]

    29. [29]

      Li, F.; Wang, D. D.; Yan, X. P.; Su, R. G.; Lin, J. M. J. Chromatogr. A 2005, 1081, 232.

    30. [30]

      Escudero, L. A.; Pacheco, P. H.; Gasquez, J. A. Food Chem. 2015, 169, 73.

    31. [31]

      Braun, D.; Ezekiel, C. N.; Abia, W. A.; Wisgrill, L.; Degen, G. H.; Turner, P. C.; Marko, D.; Warth, B. Anal. Chem. 2018, 90, 14569.

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    3. [3]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    4. [4]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    5. [5]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    6. [6]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    7. [7]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    8. [8]

      Qizhi Yao Gu Jin Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071

    9. [9]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    10. [10]

      Yaqian Duan Juan Su Meiyu Lin Yuxin Fang Wenyi Liang . Exploration of the Implementation Path of Ideological and Political Education in the “Dual-Track Teaching” Model: a Case Study of Analytical Chemistry Experiment. University Chemistry, 2024, 39(2): 181-188. doi: 10.3866/PKU.DXHX202307024

    11. [11]

      Sheng Zhang Mingyu Wang Xiaohong Wang Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071

    12. [12]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    13. [13]

      Yifeng Xu Zeying Wu Guiqin Shang Linlin Ding Fuyan Liu Huan Zhang Fuhua Jiang . Teaching Reform and Practice of Instrumental Analysis and Experiment Course under the Background of Deep Integration of Industry and Education. University Chemistry, 2025, 40(3): 285-290. doi: 10.12461/PKU.DXHX202408084

    14. [14]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    15. [15]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    18. [18]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    19. [19]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    20. [20]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

Metrics
  • PDF Downloads(2)
  • Abstract views(702)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return