Citation: Dan Sun,  Xinyu Liu,  Na Chen,  Hao Wang,  You Huang,  Haiyan Wang. The Growth Behavior and Influencing Factors of Zinc Dendrite in Zinc Electroplating Process[J]. University Chemistry, ;2023, 38(4): 68-77. doi: 10.3866/PKU.DXHX202211076 shu

The Growth Behavior and Influencing Factors of Zinc Dendrite in Zinc Electroplating Process

  • Electroplating is an important part of electrochemical system. In order to broaden the knowledge structure, and cultivate innovation consciousness and scientific literacy of students, zinc electroplating is introduced into the laboratory teaching of applied electrochemistry major. In this experiment, the cause of the zinc dendrites formation in the process of zinc electroplating is analyzed theoretically, and then two corresponding strategies of eliminating surface heterogeneity and adding cationic additives are proposed to inhibit the production of zinc dendrites. In order to deepen the understanding of zinc plating process, we set up an in situ optical microscope to directly observe the change of zinc deposition behavior. This experiment deeply integrates the scientific thinking and innovative ideas of frontier research, guides students to jump out of the textbook framework, stimulates students’ interest in scientific research, and therefore contributes to the cultivation of students’ scientific thinking ability.
  • 加载中
    1. [1]

    2. [2]

      Lu, W. J.; Xie, C. X.; Zhang, H. M.; Li, X. F. ChemSusChem 2018, 11 (23), 3996.

    3. [3]

      Liao, M.; Wang, J. W.; Ye, L.; Sun, H.; Wen, Y. Z.; Wang, C.; Sun, X. M.; Wang, B. J.; Peng, H. S. Angew. Chem. Int. Ed. 2020, 132 (6), 2293.

    4. [4]

      Deng, S. Z.; Yuan, Z. S.; Tie, Z. W.; Wang, C. D.; Song, L.; Niu, Z. Q. Angew. Chem. Int. Ed. 2020, 59 (49), 22002.

    5. [5]

      Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Angew. Chem. Int. Ed. 2012, 124 (4), 957.

    6. [6]

      Yang, Z. F.; Zhang, Q.; Xie, C. L.; Li, Y. H.; Li, W. B.; Wu, T. Q.; Tang, Y. G.; Wang, H. Y. Energy Storage Mater. 2022, 47, 319.

    7. [7]

      Li, Y. H.; Wu, P. F.; Zhong, W.; Xie, C. L.; Xie, Y. L.; Zhang, Q.; Sun, D.; Tang, Y. G.; Wang, H. Y. Energy Environ. Sci. 2021, 14 (10), 5563.

    8. [8]

      Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Angew. Chem. Int. Ed. 2019, 131 (44), 15988.

    9. [9]

      Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. Science 2019, 366 (6465), 645.

    10. [10]

      Bard, A. J.; Faulkner, L. R. Methods 2001, 2 (482), 580.

    11. [11]

      Lide, D. R. CRC Handbook of Chemistry and Physics, 85th ed.; CRC Press:Boca Raton, FL, USA, 2004; pp. 8-33.

    12. [12]

      Bouchaud, B.; Balmain, J.; Bonnet, G.; Pedraza, F. J. Rare Earths 2012, 30 (6), 559.

    13. [13]

      Plimpton, S. J.; Lawton, W. E. Phys. Rev. 1936, 50 (11), 1066.

    14. [14]

      Henry, M.; Jolivet, J. P.; Livage, J. Aqueous Chemistry of Metal Cations:Hydrolysis, Condensation and Complexation. In Chemistry, Spectroscopy and Applications of Sol-Gel Glasses; Reisfeld, R., Jørgensen, C. K. Eds.; Springer:Heidelberg, German, 1992; pp. 153-206.

    15. [15]

      Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K; Guo, Z. P.; Qiao, S. Z. Angew. Chem. Int. Ed. 2021, 60 (13), 7366.

    16. [16]

      Xie, F. X.; Li, H.; Wang, X. S.; Zhi, X.; Chao, D. L.; Davey, K.; Qiao, S. H. Adv. Energy Mater. 2021, 11 (9), 2003419.

    17. [17]

      Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Adv. Energy Mater. 2018, 8 (25), 1801090.

    18. [18]

      Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Adv. Funct. Mater. 2020, 30 (13), 1908528.

    19. [19]

      Schultze, J. W.; Hassel, A. W.; Bard, A. J.; Stratmann, M.; Frankel, G. S. Encyclopedia of Electrochemistry. Wiley-VCH:Weinheim, Germany, 2003; pp. 216-235.

    20. [20]

      Lai, Y. Q.; Liu, F. Y.; Li, J.; Zhang, Z. A.; Liu, Y. X. J. Electroanal. Chem. 2010, 639 (1), 187.

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    8. [8]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    9. [9]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    19. [19]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(19)
  • Abstract views(817)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return