Citation: Fuxian Wan,  Yuanhong Zhang,  Lili Zhang,  Lin Jiang. Detoxification to DON Toxin[J]. University Chemistry, ;2023, 38(7): 157-163. doi: 10.3866/PKU.DXHX202210063 shu

Detoxification to DON Toxin

  • DON Toxin is a natural toxin produced by Fusarium after infecting cereals, which seriously threatens food security, food safety and human health. This paper introduces the discovery and research history of vomittin, its family (monotelomeric compounds) and typical members, and the frontier research of biological detoxification by means of personification, so that readers can understand this dangerous toxin in a lively way, especially for teachers and students of agricultural and medical colleges and universities.
  • 加载中
    1. [1]

      Yoshizawa, T. Red-Mold Diseases and Natural Occurrence in Japan. In Trichothecenes−Chemical, Biological and Toxicological Aspects; Ueno, Y. Ed.; Elsevier:Amsterdam, the Netherlands, 1983; pp. 195-209.

    2. [2]

      Yoshizawa, T. Food Saf. 2013, 1 (1), 2013002.

    3. [3]

      Pestka, J. J.; Smolinski, A. T. J. Toxicol. Env. Health Part B 2005, 8, 39.

    4. [4]

      Mains, E. B.; Vestal, C. M.; Curtis, P. B. Proc. Indiana Acad. Sci. 1929, 39, 101.

    5. [5]

      Donuin, M. Phytopathology 1926, 16, 305.

    6. [6]

      Atanasoff, D. J. Agr. Res. 1920, 20, 1.

    7. [7]

      Keller, M. D.; Bergstrom, G. C.; Shields, E. J. Aerobiologia 2014, 30, 123.

    8. [8]

      Opperman, D. Dtsch. Tierarztl Wochenschr. 1929, 37, 165.

    9. [9]

      Mundkur, B. B. Phytopathology 1934, 24, 1237.

    10. [10]

      Hoyman, W. G. Phytopathology 1941, 31, 871.

    11. [11]

      Vesonder, R. F.; Hesseltine, C. W. Process Biochem. 1981, 16, 12.

    12. [12]

      Prentice, N.; Dickson, A. D.; Dickson, J. G. Nature 1959, 184, 1319.

    13. [13]

      Prentice, N.; Dickson, A. D. Biotechnol. Bioeng. 1968, 10, 413.

    14. [14]

      Yoshizawa, T.; Morooka, N. Agric. Biol. Chem. 1973, 37, 2933.

    15. [15]

      Vesonder, R. F.; Ciegler, A.; Jensen, H. Appl. Microbiol. 1973, 26, 1008.

    16. [16]

      Miller, J. D.; Greenhalgh, R.; Wang, Y. Z.; Lu, M. Mycologia 1991, 83, 121.

    17. [17]

      Freeman, G. G.; Morrison, R. I. Nature (London) 1948, 162, 30.

    18. [18]

      Godtfredsen, W. O.; Grove, J. F.; Tamm, C. Helv. Chim. Acta 1967, 50, 1666.

    19. [19]

      Gilgan, M. W.; Smalley, E. B.; Strong, F. M. Arch. Biochem. Biophys. 1966, 114, 1.

    20. [20]

      Bamburg, J. R.; Riggs, N. V.; Strong, F. M. Tetrahedron 1968, 24, 3329.

    21. [21]

      Mirocha, C. J.; Pathre, S. Appl. Microbiol. 1973, 26, 719.

    22. [22]

      Chen, L.; Yang, J.; Wang, H.; Yang, X.; Zhang, C.; Zhao, Z.; Wang, J. Trends Food Sci. Technol. 2022, 119, 179.

    23. [23]

      Miller, J. D.; Greenhalgh, R.; Wang, Y.; Lu, M. Mycologia 1991, 83, 121.

    24. [24]

      Bräse, S.; Encinas, A.; Keck, J.; Nising, C. F. Chem. Rev. 2009, 109, 3903.

    25. [25]

      Bata, A.; Harrach, B.; Ujszaszi, K.; Kis-Tamas, A.; Lasztity, R. Appl. Environ. Microbiol. 1985, 49, 678.

    26. [26]

      Corley, D. G.; Rottinghaus, G. E.; Tempesta, M. S. Tetrahedron Lett. 1986, 27, 427.

    27. [27]

      Ziegler, F. E.; Nangia, A.; Schulte, G. J. Am. Chem. Soc. 1987, 109, 3987.

    28. [28]

      Ziegler, F. E.; Metcalf, C. A.; Schulte, G. Tetrahedron Lett. 1992, 33, 3117.

    29. [29]

      Ziegler, F. E.; Metcalf, C. A.; Nangia, A.; Schulte, G. J. Am. Chem. Soc. 1993, 115, 2581.

    30. [30]

      Ziegler, F. E.; Nangia, A.; Tempesta, M. S. Tetrahedron Lett. 1988, 29, 1665.

    31. [31]

      Wang, H.; Sun, S.; Ge, W.; Zhao, L.; Hou, B.; Wang, K.; Lyu, F.; Chen. L.; Xu, S.; Guo, J.; et al. Science 2020, 368 (6493), eaba5435.

    32. [32]

      Rabbani, N.; Xue, M.; Tornalley, P. J. Biochem. Soc. Trans. 2014, 42, 419.

    33. [33]

      Huang, J.; Fang, X.; Tian, X.; Chen, P.; Lin, J.; Guo, X.; Li, J.; Fan, Z.; Song, W.; Chen, F.; et al. Nat. Chem. Biol. 2020, 16 (3), 250.

    34. [34]

      Hu, Y.; Li, H.; Min, J.; Yu, Y.; Liu, W.; Huang, J.; Zhang, L.; Yang, Y.; Dai, L.; Chen, C.; et al. Int. J. Biol. Macromol. 2022, 200, 388.

  • 加载中
    1. [1]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    4. [4]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    11. [11]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    12. [12]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    13. [13]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    16. [16]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    17. [17]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    20. [20]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

Metrics
  • PDF Downloads(6)
  • Abstract views(2121)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return