Citation: Yu Liu,  Jiming Zheng,  Nayan Zongchen,  Hong Wu,  Wanqun Hu. Combining Infrared Spectroscopy Experiment with Quantum Chemical Calculations to Study Hydrogen Bond in Several Aliphatic Alcohol and CCl4 Solutions[J]. University Chemistry, ;2023, 38(8): 216-224. doi: 10.3866/PKU.DXHX202210029 shu

Combining Infrared Spectroscopy Experiment with Quantum Chemical Calculations to Study Hydrogen Bond in Several Aliphatic Alcohol and CCl4 Solutions

  • Corresponding author: Hong Wu,  Wanqun Hu, 
  • Received Date: 10 October 2022

  • Infrared spectroscopy has become a common method for analysis and characterization owing to its high sensitivity, high-speed measurement, and ability to obtain many information about functional groups. Although most of the experimental projects in existing textbooks focus on the qualitative and quantitative analysis of compounds, which are mainly based on infrared spectroscopy, there are few experimental investigations on infrared spectroscopy involving intermolecular hydrogen bonding and quantum chemical calculations. In this study, based on original infrared spectroscopy experiments, several common aliphatic alcohols were used as examples to investigate the infrared spectral characteristics of alcohol-carbon tetrachloride solutions with different percentages (V/V%). The hydrogen bond structures were explored in combination with quantum chemical calculations. The improved teaching method, combining macro and micro that is experimental phenomena and molecular structure respectively, may enable students to have a clearer understanding of the original frequency values of absorption peaks and the microscopic effect of intermolecular hydrogen bonds. In addition, it can significantly improve their interest in learning, broaden their horizons, and cultivate innovative thinking and critical thinking skills.
  • 加载中
    1. [1]

      Zhang, J.; Chen, P. C.; Yuan, B. K.; Ji, W.; Cheng, Z. H.; Qiu, X. H. Science 2013, 342, 611.

    2. [2]

      Kawai, S.; Nishiuchi, T.; Kodama, T.; Spijker, P.; Pawlak, R.; Meier, T.; Tracey, J.; Kubo, T.; Meyer, E.; Foster, A. S. Sci. Adv. 2017, 3, e1603258.

    3. [3]

      Li, G.; Zhang, Y. Y.; Li, Q. M.; Wang, C.; Yu, Y.; Zhang, B. B.; Hu, H. S.; Zhang, W. Q.; Dai, D. X.; Wu, G. R.;et al. Nat. Commun. 2020, 11, 5449.

    4. [4]

      Dereka, B.; Yu, Q.; Lewis, Nicholas H. C.; Carpenter, W. B.; Bowman, J. M.; Tokmakoff, A. Science 2021,371, 160.

    5. [5]

      Sweetman, A. M.; Jarvis, S. P.; Sang, H. Q.; Lekkas, I.; Rahe, P.; Wang, Y.; Wang, J. B.; Champness, N. R.; Kantorovich, L.; Moriarty, P.Nat. Commun. 2014, 5, 3931.

    6. [6]

      Chibani, S.; Badawi, M.; Loiseau, T.; Volkringer, C.; Cantrel, L.; Paul, J. F. Phys. Chem. Chem. Phys. 2018, 20, 16770.

    7. [7]

      Hao, M. H. J. Chem. Theory Comput. 2006, 2, 863.

    8. [8]

      George, W. O.; Has, T.; Hossain, M. F.; Jones, B. F.; Lewis, R. J. Chem. Soc., Faraday Trans. 1998,94, 2701.

    9. [9]

      Coussan, S.; Roubin, P.; Perchard, J. P. J. Phys. Chem. A 2004, 108, 7331.

    10. [10]

      Fedor, A. M.; Toda, M. J. J. Chem. Educ. 2014, 91, 2191.

    11. [11]

      Bec, K. B.; Futami, Y.; Woxjcik, M. J.; Ozaki, Y. Phys. Chem. Chem. Phys. 2016,18, 13666.

    12. [12]

      Jadhav, D. L.; Karthick, N. K.; Kannan P. P.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G. J. Mol. Struct. 2017, 1130, 497.

    13. [13]

      Kannan, P. P.; Karthick, N. K.; Arivazhagan, G. Spectrochim. Acta A 2020,229, 117892.

    14. [14]

    15. [15]

      Tirado-Rives, J.; Jorgensen, W. L. J. Chem. Theory. Comput. 2008, 4 (2), 297.

    16. [16]

      Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. J. Comput. Chem. 2019, 40 (32), 2868.

    17. [17]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;Petersson, G. A.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.:Wallingford, CT, USA, 2019.

    18. [18]

    19. [19]

    20. [20]

    21. [21]

      Joseph W. O. Vibrational Analysis in Gaussian.[2022-05-06]. https://gaussian.com/vib/

    22. [22]

      Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111 (45), 11683.

    23. [23]

    24. [24]

      Malloum, A.; Fifen, J. J.; Conradie, J. Int. J. Quantum. Chem. 2020,120 (13), e26234.

    25. [25]

      Golub, P.; Doroshenko, I.; Pogorelov, V. Phys. Lett. A 2014, 378, 1937.

    26. [26]

      Golub, P.; Pogorelov, V.; Doroshenko, I. J. Mol. Liq. 2012, 169, 80.

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    3. [3]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    4. [4]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    10. [10]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    11. [11]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    12. [12]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    13. [13]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    14. [14]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    15. [15]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    16. [16]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    17. [17]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    18. [18]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    19. [19]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    20. [20]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

Metrics
  • PDF Downloads(7)
  • Abstract views(1492)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return