Citation: Quanguo Zhai,  Shuni Li,  Lingling Wei,  Yucheng Jiang,  Lingxiang Gao,  Mancheng Hu,  Shengli Gao. 基础无机化学“物质状态”课程设计怎样解决“衔接-基础-提升”矛盾[J]. University Chemistry, ;2022, 37(11): 220701. doi: 10.3866/PKU.DXHX202207014 shu

基础无机化学“物质状态”课程设计怎样解决“衔接-基础-提升”矛盾

  • Received Date: 1 July 2022

  • “物质状态”内容既是大学与高中课程的衔接,又是基础无机化学知识,还要兼顾课程内容的“高阶性、创新性和挑战度”,本章定名为“物质的聚集状态及晶体结构”,并将内容设计为“物质的聚集状态”“物质的常三态”和“晶体的微观结构”3个模块,有利于达到“知识-能力-素质有机融合”,解决“衔接-基础-提升”矛盾。
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

      Kosyakov, V. I.; Shestakov, V. A. Dokl. Phy. Chem. 2001, 376 (4), 49.

    13. [13]

      Verma, A. R. Nature 1951, 168 (4271), 430.

    14. [14]

      Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Phy. Rev. Lett. 1984, 53 (20), 1951.

    15. [15]

    16. [16]

    17. [17]

      Beattie, J. A.; Huang, T. C.; Benedict, M. Proc. Am. Acad. Arts Sci. 1938, 72 (3), 137.

    18. [18]

      Stimson, H. J. Wash. Acad. Sci. 1945, 35 (7), 201.

    19. [19]

    20. [20]

      Onnes, H. K. Further Experiments with Liquid Helium. H. On the Electrical Resistance of Pure Metals etc. VII. The Potential Difference Necessary for the Electric Current through Mercury below 4.19 K. In Through Measurement to Knowledge, Boston Studies in the Philosophy of Science; Gavroglu, K., Goudaroulis, Y. Eds.; Springer:Dordrecht, Netherlands, 1991; pp. 273-314.

    21. [21]

      Kapitza, P. Nature 1938, 141 (3558), 74.

    22. [22]

      Irving, L. Proc. Natl. Acad. Sci. 1928, 14 (8), 627.

    23. [23]

      Grosse, W.; Frick, H. J. Hydrobiologia 1999, 415, 55.

    24. [24]

      Grosse, W. Aquat. Bot. 1996, 54 (2), 101.

    25. [25]

      Grosse, W.; Armstrong, J.; Armstrong, W. A. Aquat. Bot. 1996, 54 (2), 87.

    26. [26]

      Schiwinsky, K.; Grosse, W.; Woermann, D. Z. Naturforsch. C 1996, 51 (9-10), 681.

    27. [27]

    28. [28]

      Hawking, S. W. Nature 1974, 248 (5443), 30.

    29. [29]

      Salzmann, C. G.; Radaelli, P. G.; Mayer, E.; Finney, J. L. Phys. Rev. Lett. 2009, 103 (10), 105701.

    30. [30]

      Sugimoto, T.; Aiga, N.; Otsuki, Y.; Watanabe, K.; Matsumoto, Y. Nat. Phys. 2016, 12 (11), 1063.

    31. [31]

      Bhardwaj, A.; Kaur, J.; Wuest, M.; Wuest, F. Nat. Commun. 2017, 8 (1), 1.

    32. [32]

      Bundy, F. P. J. Chem. Phys. 1963, 38 (3), 631.

    33. [33]

      Züttel, A. Mater. Today 2003, 6 (9), 24.

    34. [34]

      Shields, P. A.; Bumby, C. W.; Li, L. J. J. Appl. Phys. 2004, 96 (5), 2725.

    35. [35]

      Ruffell, S.; Haberl, B.; Koenig, S.; Bradby, J. E.; Williams, J. S. J. Appl. Phys. 2009, 105 (9), 093513.

    36. [36]

      Pauling, L. J. Am. Chem. Soc. 1935, 57 (12), 2680.

    37. [37]

      Suga, H. Thermochim. Acta 1997, 300 (1), 117.

    38. [38]

      Salzmann, C. G.; Radaelli, P. G.; Finney, J. L.; Mayer, E. Phys.Chem. Chem. Phys. 2008, 10 (41), 6313.

    39. [39]

      Knight, C.; Singer, S. J. J. Phys. Chem. B 2005, 109 (44), 21040.

    40. [40]

      Sellers, M. S.; Schultz, A. J.; Basaran, C.; Kofke, D. A. Phys. Rev. B 2010, 81 (13), 134111.

    41. [41]

      Boulfelfel, S. E.; Seifert, G.; Grin, Y.; Leoni, S. Phys. Rev. B 2012, 85 (1), 014110.

    42. [42]

      Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Nature 2018, 556 (7699), 43.

    43. [43]

      Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Nature 2018, 556 (7699), 80.

    44. [44]

      Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J. M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Nature 2020, 583 (7815), 215.

    45. [45]

      Uri, A.; Grover, S.; Cao, Y.; Crosse, J. A.; Bagani, K.; Rodan-Legrain, D.; Myasoedov, Y.; Watanabe, K.; Taniguchi, T.; Moon, P.; et al. Nature 2020, 581 (7806), 47.

    46. [46]

    47. [47]

      Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; et al. Astrophys. J. Lett. 2019, 875 (1), L2.

    48. [48]

      Kuramoto, N.; Mizushima, S.; Zhang, L.; Fujita, K.; Azuma, Y.; Kurokawa, A.; Okubo S.; Inaba, H.; Fujii, K. Metrologia 2017, 54 (5), 716.

    49. [49]

  • 加载中
    1. [1]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    15. [15]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    16. [16]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    19. [19]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(8)
  • Abstract views(472)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return