Citation: Xiaohan Wang,  Dongxiao Cao,  Wei Li,  Yan Chen,  Anna Tang,  Deming Kong. Synthesis and Application of Morphology Controllable Covalent Organic Frameworks[J]. University Chemistry, ;2023, 38(5): 110-118. doi: 10.3866/PKU.DXHX202206098 shu

Synthesis and Application of Morphology Controllable Covalent Organic Frameworks

  • Covalent organic frameworks (COFs), a new type of crystalline porous materials, have attracted considerable attention in many fields such as separation, catalysis, drug release, and optoelectronics. The crystallinity and morphology of COFs determine their application. In this study, the synthetic methods and applications of COFs with different morphologies (spherical, thin film, rod, tubular, fibrous, belt, cage, and roll) are reviewed. Existing problems are also discussed and their potential solutions are proposed.
  • 加载中
    1. [1]

      Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.

    2. [2]

      Ma, W. D.; Zheng, Q.; He, Y. T.; Li, G. R.; Guo, W. J.; Lin, Z.; Zhang, L. J. Am. Chem. Soc. 2019, 141, 18271.

    3. [3]

      Li, Y. X.; Zhang, H. N.; Chen, Y. T.; Huang, L.; Lin, Z.; Cai, Z. W. ACS Appl. Mater. Interfaces 2019, 11, 22492.

    4. [4]

      Liang, H.; Xu, H. B.; Zhao, Y. T.; Zheng, J.; Zhao, H.; Li, G. L.; Li, C. P. Biosens. Bioelectron. 2019, 144, 111691.

    5. [5]

      Li, W.; Wang, R.; Jiang, H. X.; Chen, Y.; Tang, A. N.; Kong, D. M. Talanta 2022, 236, 122829.

    6. [6]

      Wang, K.; Wang, W.; Pan, S.; Fu, Y.; Dong, B.; Wang, H. Appl. Mater. Today 2020, 19, 100550.

    7. [7]

      Li, M. M.; Qiao, S.; Zheng, Y. L.; Andaloussi, Y. H.; Li, X.; Zhang, Z. J.; Li, A.; Cheng, P.; Ma, S. Q.; Chen, Y. J. Am. Chem. Soc. 2020, 142, 6675.

    8. [8]

      Yin, Z. J.; Xu, S. Q.; Zhan, T. G.; Qi, Q. Y.; Wu, Z. Q.; Zhao, X. Chem. Commun. 2017, 53, 7266.

    9. [9]

      Li, W.; Jiang, H. X.; Cui, M. F.; Wang, R.; Tang, A. N.; Kong, D. M. J. Hazard. Mater. 2022, 432, 128705.

    10. [10]

      Kandambeth, S.; Venkatesh, V.; Shinde1, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Nat. Commun. 2015, 6, 6786.

    11. [11]

      Sasmal, H. S.; Halder, A.; Kunjattu, S.; Dey, K.; Nadol, A.; Ajithkumar, T. G.; Bedadur, P. R.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 20371.

    12. [12]

      Shinde, D. B.; Cao, L.; Wonanke, A. D. D.; Li, X.; Kumar, S.; Liu, X. W.; Hedhili, M. N.; Emwas, A. H.; Addicoat, M.; Huang, K. W.; et al. Chem. Sci. 2020, 11, 5434.

    13. [13]

      Wang, X. H.; Li, W.; Jiang, H. X.; Chen, Y.; Gao, R. Z.; Tang, A. N.; Kong, D. M. Microchim. Acta 2021, 188, 235.

    14. [14]

      Hao, Q.; Li, Z. J.; Lu, C.; Sun, B.; Zhong, Y. W.; Wan, L. J.; Wang, D. J. Am. Chem. Soc. 2019, 141, 19831.

    15. [15]

      Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. Adv. Funct. Mater. 2020, 30, 1907717.

    16. [16]

      Pachfule, P.; Kandmabeth, S.; Mallick, A.; Banerjee, R. Chem. Commun. 2015, 51, 11717.

    17. [17]

      Gole, B.; Stepanenko, V.; Rager, S.; Grune, M.; Medina, D. D.; Bein, T.; Wurthner, F.; Beuerle, F. Angew. Chem. Int. Ed. 2018, 57, 846.

    18. [18]

      Rodriguez-San-Miguel, D.; Abrishamkar, A.; Navarro, J. A. R.; Rodriguez-Trujillo, R.; Amabilino, D. B.; Mas-Ballesté, R.; Zamora, F.; Puigmartí-Luis, J. Chem. Commun. 2016, 52, 9212.

    19. [19]

      Huang, W.; Jiang, Y.; Li, X.; Li, X.; Wang, J.; Wu, Q.; Liu, X. ACS Appl. Mater. Interfaces 2013, 5, 8845.

    20. [20]

      Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. L. Angew. Chem. Int. Ed. 2008, 47, 8826.

    21. [21]

      Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Tan, X. N.; Shao, D.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Feng, J. Q.; Han, B. X.; et al. ChemSusChem 2018, 11, 3576.

    22. [22]

      Jennings, J.; Beija, M.; Richez, A. P.; Cooper, S. D.; Mignot, P. E.; Thurecht, K. J.; Jack, K. S.; Howdle, S. M. J. Am. Chem. Soc. 2012, 134, 4772.

    23. [23]

      Li, H. Y.; Bredas, J. L. Chem. Mater. 2019, 31, 3265.

    24. [24]

      Florian, B.; Bappaditya, G. Angew. Chem. Int. Ed. 2018, 57, 4850.

    25. [25]

      Ma, J. X.; Li, J.; Chen, Y. F.; Ning, R.; Ao, Y. F.; Liu, J. M.; Sun, J. L.; Wang, D. X.; Wang, Q. Q. J. Am. Chem. Soc. 2019, 141, 3843.

    26. [26]

      Unterlass, M. M. Angew. Chem. Int. Ed. 2018, 57, 2292.

    27. [27]

      Chen, Y.; Li, W.; Wang, X. H.; Gao, R. Z.; Tang, A. N.; Kong, D. M. Mater. Chem. Front. 2021, 5, 1253.

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    8. [8]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    9. [9]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    10. [10]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(12)
  • Abstract views(993)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return